

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will work or you may receive no credit. You may not use a calculator on this portion of the exam.

1. Suppose matrix A is a 9x5 matrix with 4 pivot columns. Determine the following. (10 points)

dim Row
$$A^T = 4$$

dim Row $A^T = 4$ If Col A is a subspace of R^m , then m = 4

If Nul A is a subspace of R^n , then $n = ___5$

2. Consider the stochastic Markov chain matrix given by the matrix $A = \begin{bmatrix} .7 & .2 \\ .3 & .8 \end{bmatrix}$. Calculate the equilibrium vector of the system. (5 points)

$$P-I=\begin{bmatrix} -.3 & .2 \\ .3 & -.2 \end{bmatrix}$$

$$P-I = \begin{bmatrix} -3 & .2 \\ .3 & -.2 \end{bmatrix} \qquad \begin{matrix} .3x_1 = .2x_2 \Rightarrow \end{matrix} \qquad \begin{matrix} x_1 = \frac{2}{3}x_2 \\ x_2 = x_2 \end{matrix} \Rightarrow \begin{matrix} \vec{x} = \begin{bmatrix} \frac{2}{3} \end{bmatrix} \end{matrix}$$

$$g = \begin{bmatrix} 2/5 \\ 3/5 \end{bmatrix} = \begin{bmatrix} .4 \\ .6 \end{bmatrix}$$

3. List at least 8 properties of Invertible Matrices from the Invertible Matrix Theorem. (8 points)

There are 20 to choose from. Answers will vary

1) A is invertible

- 6) A is onto
- 2) AT is invertible
- 7) Col A is basis for Rn.

2) det A \$0

8) dim Nul A = 0

- 4) Nul A = 808
- 5) A is one-to-one

4. Find the eigenvalues and eigenvectors of the matrices below. Be sure to clearly indicate the characteristic equation, and which eigenvalues and eigenvectors go together. (10 points)

a.
$$A = \begin{bmatrix} 7 & 2 \\ 4 & 5 \end{bmatrix}$$

$$det \begin{bmatrix} 7-\lambda & 2 \\ 4 & 5-\lambda \end{bmatrix} = (7-\lambda)(5-\lambda) - 8 = \lambda^2 - 12\lambda + 37 = 0$$

$$(\lambda - 9)(\lambda - 3) = 0$$

$$\begin{bmatrix} -2 & 2 \\ 4 & -4 \end{bmatrix} \Rightarrow -2x_1 = -2x_2 \Rightarrow x_1 = x_2 \Rightarrow x_1 = x_2 \Rightarrow x_1 = x_2$$

$$-2x_1 = -2x_2 \Rightarrow$$

$$X_1 = X_2 = X_1$$

$$X_1 = -\frac{1}{2}X_2$$

$$X_2 = X_2$$

$$\begin{bmatrix} 4 & 2 \\ 4 & 2 \end{bmatrix} \Rightarrow 4x_1 = -2x_2 \Rightarrow x_1 = -\frac{1}{2}x_2 \Rightarrow x_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} 7 & -20 \\ 4 & -1 \end{bmatrix}$$

$$\det \begin{bmatrix} 7-\lambda & -20 \\ 4 & -1-\lambda \end{bmatrix} \Rightarrow (7-\lambda)(-1-\lambda) + 80 \Rightarrow \lambda^2 - 6\lambda + 73 = 0$$

$$\gamma = \frac{6 \pm \sqrt{36-4(73)}}{6 \pm \sqrt{-256}} = \frac{3 \pm 8i}{3}$$

$$\begin{bmatrix} 7 - (3+8i) & -20 \\ 4 & -1 - (3+8i) \end{bmatrix} = \begin{bmatrix} 4 - 8i & -20 \\ 4 & -4 - 8i \end{bmatrix} \frac{4x_1}{4} = \underbrace{(4+8i)}_{4} x_2$$

$$X_1 = (1 + 2i) X_2$$

 $X_2 = X_2$

$$V_1 = \begin{bmatrix} 1 + 2i \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} i$$

$$V_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

5. For the matrix $A = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$, with eigenvalues $\lambda_1 = 3$, $\lambda_2 = 2$ and eigenvectors $\overrightarrow{v_1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\overrightarrow{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, find a similarity transformation matrix P so that A can be diagonalized. Clearly state both P and D. (5 points)

$$P = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

6. Given the vectors $\vec{u} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ 6 \\ 3 \end{bmatrix}$ find the following.

a.
$$\vec{v}\cdot\vec{u}$$
 (2 point

b. $\|\vec{u}\|$. (2 points)

$$\sqrt{9+1+10} = \sqrt{26}$$

c. A unit vector in the direction of \vec{u} . (2 points)

d. Find the distance between \vec{u} and \vec{v} . (3 points)

$$\vec{u} - \vec{v} = \begin{bmatrix} 5 \\ -7 \end{bmatrix} ||\vec{u} - \vec{v}|| = \sqrt{25 + 49t1} = \sqrt{75} = 5\sqrt{3}$$

e. Are \vec{u} and \vec{v} orthogonal? Why or why not? (2 points)

yes since the dot product is zero.

7.	7. Determine if each statement is True or False. (2 points each)			
•	a.	T	(F)	ent is True or False. (2 points each) Every eigenvalue has only one corresponding eigenvector.
	b.	Т	F	An nxn matrix will always have exactly n real eigenvalues.
	c.	T	E	If A and B are row equivalent, then their column spaces are the same.
	d.	T	F	$P_{C \leftarrow B} = P_B^{-1} P_C$
	e.	T	E	A linearly independent set that spans the space in a subspace H is a basis for H.
	f.	T	F	If the steady-state vector for a stochastic matrix is unique then the Markov Chain matrix has no absorbing states and has communication between all available states.
	g.	T	F	A matrix is invertible if and only if 0 is not an eigenvalue of A.
	h.	Т	F	The eigenvalues of a matrix are always on its main diagonal.
	i.	T	F	The eigenspace of an nxn matrix with n distinct real eigenvalues always form a basis for \mathbb{R}^n .
	j.	T	F	A trajectory of a dynamical system is a set of ordered vectors $\overrightarrow{x_k}$ that tracks the population values of a system over time.
	k.	т (F	The elementary row operations of A do not change its eigenvalues.
	I.	Т	F	If A is diagonalizable, then A is invertible.
	m.	T	F	The complex eigenvalues of a discrete dynamical system either both attract to the origin or both repel from the origin.

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will work or you may receive no credit. You may use a calculator on this portion of the exam.

1. a. For the matrix $B = \begin{bmatrix} 2 & 2 \\ -13 & -8 \end{bmatrix}$, with eigenvalues $\lambda = -3 \pm i$, with eigenvectors $\vec{v} = \begin{bmatrix} -5 \\ 13 \end{bmatrix} + \begin{bmatrix} \mp 1 \\ 0 \end{bmatrix} i$. Find one similarity transformation P that will transform B=PCP⁻¹, where C is a scaled rotation matrix. State both P and C. (5 points)

$$P = \begin{bmatrix} -5 & -1 \\ 13 & 0 \end{bmatrix}$$
 $C = \begin{bmatrix} -3 & -1 \\ 1 & -3 \end{bmatrix}$

$$C = \begin{bmatrix} -3 & -1 \\ 1 & -3 \end{bmatrix}$$

b. Use the C matrix from part a, and find the scaling factor and then calculate the angle of rotation of the matrix. Round your angle to 3 decimal places in radians, or to the nearest whole degree. (5 points)

$$C = \begin{bmatrix} r\cos\theta & r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix}$$

$$\sqrt{3^2 + 1^2} = \sqrt{10} = r$$

$$\sqrt{3^2+1^2} = \sqrt{10} = \Gamma$$

$$\cos^{-1}(-3\sqrt{5}) = \Theta = 2.8198.$$

$$\Theta = 161.56^{\circ}$$

2. Assume that
$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 0 & 3 \\ 3 & 4 & -1 & 1 & 2 & 5 \\ 1 & 2 & 0 & 4 & 1 & -8 \\ 2 & 6 & 1 & 8 & 1 & 11 \end{bmatrix}$$
.

Find a basis for the null space of A. (6 points)

b. Find the dimension of the kernel? (3 points)

3. Given the bases $B = \{1 + 3t - t^2, 2 + 5t - 2t^2, 7 - t + 4t^2\}$ and $C = \{2 - 3t + 2t^2, 1 - 4t + 2t^2\}$ $3t^2$, $6t+t^2$ } below, find the change of basis matrices $\mathop{P}\limits_{C\leftarrow B}$ and $\mathop{P}\limits_{B\leftarrow \mathbb{C}}$. For the B-coordinate vector \vec{p} given as $[\vec{p}]_B = \begin{bmatrix} 1 \\ 6 \\ -2 \end{bmatrix}$, find the C-coordinate vector for \vec{p} , and find the original p(t) in the

standard basis. Be sure to state any matrices you use to solve.(8 points)

$$P_{B} = \begin{bmatrix} 1 & 2 & 7 \\ 3 & 5 & -1 \\ -1 & -2 & 4 \end{bmatrix} \qquad P_{C} = \begin{bmatrix} 2 & 1 & 0 \\ -3 & -4 & 6 \\ 2 & 3 & 1 \end{bmatrix} \qquad P_{CCB} = \begin{bmatrix} -31/29 & 61/29 & 129/29 \\ -33/29 & -64/29 & -555/29 \\ 8/29 & 12/29 & 23/29 \end{bmatrix}$$

$$P_{BCC} = \begin{bmatrix} -28/11 & 5/11 & 169/11 \\ 4/11 & 4/11 & -1 & -8 \\ 4/11 & 4/11 & 4/11 \end{bmatrix} \qquad P_{CCB} = \begin{bmatrix} 139/29 \\ -307/29 \\ 34/29 \end{bmatrix} = \begin{bmatrix} 77\\C \\ 79\\C \\ 79\\$$

$$P_{B}[\vec{p}]_{B} = \begin{bmatrix} -1\\35\\-21 \end{bmatrix} = p(t) = -1 + 35t - 21t^{2}$$

- 4. Consider the discrete dynamical system given by the matrix $A = \begin{bmatrix} .4 & .15 \\ -.7 & 1.2 \end{bmatrix}$.
 - a. Determine the behaviour of the origin for this system: is it a repeller, an attractor or a saddle point? (7 points)

$$(4-7)(1.2-2)+(1.7)(15)=$$
 $\lambda_1=.5654$ $\lambda_2=1.0345$

b. Given the initial condition of the population as $x_0 = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$, find 10 points of the trajectory for the system and list them here. (5 points)

$$\begin{bmatrix} 5 \\ 12 \end{bmatrix}, \begin{bmatrix} 3.8 \\ 10.9 \end{bmatrix}, \begin{bmatrix} 3.155 \\ 10.42 \end{bmatrix}, \begin{bmatrix} 2.825 \\ 10.29 \end{bmatrix}, \begin{bmatrix} 2.67 \\ 10.37 \end{bmatrix}, \begin{bmatrix} 2.62 \\ 10.58 \end{bmatrix},$$

$$\begin{bmatrix} 2.63 \\ 10.85 \end{bmatrix}, \begin{bmatrix} 2.68 \\ 11.18 \end{bmatrix}, \begin{bmatrix} 2.75 \\ 11.54 \end{bmatrix}, \begin{bmatrix} 2.83 \\ 11.92 \end{bmatrix}, \begin{bmatrix} 2.92 \\ 12.32 \end{bmatrix}$$

c. Plot the points on a graph together with the eigenvectors of the system. Make sure your graph is big enough to clearly read it. Connect the trajectory with a curve and an arrow indicating the flow of time. (8 points)

$$\begin{bmatrix} -.1654 & .15 \\ -.7 & .6346 \end{bmatrix} \quad \begin{array}{c} X_1 = -115 \\ -.1654 \end{array} \quad \begin{array}{c} X_2 = -115 \\ -.1654 \end{array} \quad \begin{array}{c} X_3 = -115 \\ -.1654 \end{array} \quad \begin{array}{c} X_4 =$$

$$\begin{bmatrix} -.6345 & .15 \\ -.7 & .1655 \end{bmatrix} \qquad \chi_{1} = \frac{-.15}{-.6345} \chi_{2} \implies \begin{bmatrix} .236 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ 4.23 \end{bmatrix}$$

5. Determine if the functions $f(x) = \sin(x)$ and $g(x) = \cos(x)$ are orthogonal under the inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$. (6 points)

$$\int_{-\pi}^{\pi} \sin x \cos x \, dx = \frac{1}{2} \sin^2 x \Big|_{-\pi}^{\pi} = 0$$

yes, they are orthogonal.

- 6. Answer each of the equations below as completely as possible. (5 points each)
 - a. How does one determine the dimension of a vector space (or subspace)?

the dimension of the vector space is determined by the # & vectors in the basis.

b. Explain why the equilibrium vector of a stochastic matrix must correspond to an eigenvalue of one.

Pg=g is equivalent to AV=X3
Where I is I and V=g

Since the vector produces toelf rather than a multiple of toelf the eigenvalue must be one.

Explain the difference between "orthogonal" and "perpendicular".

Perpendicular is a spormetric property.
The would dot product in R" makes
Orthogonality equivalent to perpendiculantly,
But, orthogonality depends on the inner
Product used and can be extended to nonGeometric properties and spaces.