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Math 2568, Exam #3 - Part |, Fall 2013 Name ;’/\ el

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will
work or you may receive no credit. You may not use a calculator on this portion of the exam.

1. Suppose matrix A is a 9x5 matrix with 4 pivot columns. Determine the following. (10 points)
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dim Row AT = i"l ~ IfColAisa subspace of R™, then m = [

Rank A = Z[ If Nul A is a subspace of R", then n = 2
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2. Consider the stochastic Markov chain matrix given by the matrix 4 :{ 3 ] . Calculate the

equilibrium vector of the system. (5 points)
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3. List at least 8 properties of Invertible Matrices from the Invertible Matrix Theorem. (8 points)
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Find the eigenvalues and eigenvectors of the matrices below. Be ‘
characteristic equation, and which ei

genvalues and eigenvectors

ure to clearly indicate the
{o together. (10 points)
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5. Forthe matrix 4 = ﬁ g], with eigenvalues A; = 3,1, = 2 and eigenvectors 7= [(1)] , Uy = [_11],
find a similarity transformation matrix P so that A can be diagonalized. Clearly state both P and D.
(5 points)
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6. Given the vectors i = [—IJ,ﬁ = [ 6 J find the following.
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a. v-u (2 points)
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b. ||@l. (2 points)
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¢. Aunit vector in the direction of . (2 points)
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d. Find the distance between % and #. (3 points)
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e. Are i and ¥ orthogonal? Why or why not? (2 points)
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7. Determine if each statement is True or False.
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(2 points each)
Every eigenvalue has only one corresponding eigenvector.

An nxn matrix will always have exactly n real eigenvalues.
If A and B are row equivalent, then their column spaces are the same.
Pecp = Pg'P;

Alinearly independent set that spans the space in a subspace His a
basis for H.

If the steady-state vector for a stochastic matrix is unique then the
Markov Chain matrix has no absorbing states and has communication
between all available states.

A matrix is invertible if and only if 0 is not an eigenvalue of A,

The eigenvalues of a matrix are always on its main diagonal.

The eigenspace of an nxn matrix with n distinct real eigenvalues always
form a basis for R”.

A trajectory of a dynamical system is a set of ordered vectors X, that
tracks the population values of a system over time,

The elementary row operations of A do not change its eigenvalues.
If A is diagonalizable, then A is invertible.

The complex eigenvalues of a discrete dynamical system either both
attract to the origin or both repel from the origin.



Math 2568, Exam #3 — Part I, Fall 2013 Name

Instructions: Show all work. Use exact answers unless specifically asked to round. Justify answers will
work or you may receive no credit. Yoy may use a calculator on this portion of the exam.

1. a. Forthe matrix B = [__213' —28]’ with eigenvalues A = —3 i, with eigenvectors ¥ = ["153] +
[-B ] i. Find one similarity transformation P that will transform B=PCP™, where Cis a scaled rotation

matrix. State both Pand C. (5 points)
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b. Use the C matrix from part a, and find the scalin

of the matrix. Round your angle to 3 decimal
(5 points)

g factor and then calculate the angle of rotation
places in radians, or to the nearest whole degree.
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a.  Find a basis for the null space of A. (6 points)
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b. Find the dimension of the kernel? (3 points)

3. Giventhe bases B = {1 + 3t — t2,2 + 5t — 2t%,7 =t +4t%}and € = {2 — 3t + 2t 1 - 4¢ +
3t2, 6t + t2} below, find the change of basis matrices CPB and BP . For the B-coordinate vector
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;:o given as [E]H =| 6 |, find the C-coordinate vector for }) , and find the original p(t) in the
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standard basis. Be sure to state any matrices you use to solve.(8 points)
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gin for this system: is it a repeller, an attractor or a
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4. Consider the discrete dynamical system given by the matrix 4 = { J .

a. Determine the behaviour of the ori
saddle point? (7 points)
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b. Given the initial condition of the population as x, = [152], find 10 points of the trajectory for
the system and list them here. (5 points)
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C. Plot the points on a graph together with the eij
graph is big enough to clearly read it. Connect
indicating the flow of time. (8 points)
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5. Determine if the functions f(x) = sin(x) and g(x) = cos(x) are orthogonal under the inner
product (f, g) = [* f(x)g(x)dx. (6 points)
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6. Answer each of the equations below as completely as possible. (5 points each)
a. How does one determine the dimension of a vector space (or subspace)?
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b. Explain why the equilibrium vector of a stochastic matrix must correspond to an eigenvalue
of one.
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C.

|
Explain the difference between “orthogonal” and “perpendicular”.
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