

1. Suppose that you took 7 samples of a Bernoulli random variable and obtained 5 successes. Write the equation of the maximum likelihood estimator. Then find the MLE estimate for \hat{p} .

$$p^{5}(1-p)^{2} = L(p)$$
 $L'(p) = 5p^{4}(1-p)^{2} - 2p^{5}(1-p) = 0$
 $p^{4}(1-p)[5(1-p) - 2p] = [5 - 7p]p^{4}(1-p) = 0$
 $5 - 7p = 0$
 $p = \frac{5}{7}$
 $p = 0$
 $p = 0$

2. Suppose that the number of wild rabbits that investigate a no-kill trap is distributed as a Poisson random variable. Hiding in a blind, an ecologist captures and tags 2, 6, 3, 8, 0, 1 animals in the next six hours. Write the equation of the maximum likelihood estimator. Then find the MLE estimate for $\hat{\mu}$.

$$L(\mu) = \frac{e^{-\mu}\mu^{2}}{2!} \frac{e^{-\mu}\mu^{6}}{6!} \cdot \frac{e^{-\mu}\mu^{3}}{3!} \cdot \frac{e^{-\mu}\mu^{3}}{8!} \cdot \frac{e^{-\mu}\mu^{6}}{0!} \cdot \frac{e^{-\mu}\mu^{1}}{1!} \cdot \frac{e^{-\mu}\mu^{6}}{1!} = 0$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{e^{-\mu}\mu^{6}}{\mu^{2}} + 20\mu^{19}e^{-6\mu} = 0$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{e^{-\mu}\mu^{6}}{\mu^{2}} + 20\mu^{19}e^{-6\mu} = 0$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{e^{-\mu}\mu^{6}}{\mu^{6}} = \frac{10}{3}$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{e^{-\mu}\mu^{6}}{h^{6}} = \frac{10}{3}$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{1}{\mu^{2}} \frac{1}{\mu^{2}} = \frac{10}{3}$$

$$\lim_{h \to 0} \frac{1}{\mu^{2}} \frac{1}{\mu^{2}} \frac{1}{\mu^{2}} = \frac{10}{3}$$

3. Suppose that you measure the heights of 4 women (heights are distributed normally) and obtain the results (in cm): 155, 170, 152, 160. Write the equation for the maximum likelihood function and use it to find the MLE estimates for $\hat{\mu}$ and $\hat{\sigma}$.

$$L(\mu,\sigma) = \frac{1}{12\pi\sigma} e^{-\frac{(155-\mu)^2}{2\sigma^2}} \cdot \frac{1}{12\pi\sigma} e^{-\frac{(170-\mu)^2}{2\sigma^2}} \cdot \frac{1}{12\pi\sigma} e^{-\frac{(160-\mu)^2}{2\sigma^2}} \cdot$$

In these graphs x is μ and y is σ . x is plotted between 150 and 170. y is plotted between 2 and 10. Do these graphs agree with your estimates from the math?

T = 146.8875 ≈ 6.832825