Instructions: Show all work. Answer each question as completely as possible. Use exact values (yes, that means fractions!).

1. Graphically interpret the meaning of the following information: A basis for R^2 is $\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}\}$; the coordinates for $[\vec{x}]_B = \begin{bmatrix} 3\\-2 \end{bmatrix}$. Sketch the situation and find the vector \vec{x} in the standard basis.

2. Determine if the polynomials $\{(2-t)^3, (3-t)^2, 1+6t-5t^2+t^3, 1\}$ form a basis for the space P_3 . Explain your reasoning. $(3-t)^2 = 9-6t+t^2$

3. Use the set of polynomials in #2. Find a basis for the subspace, if needed, and represent the polynomial $4 + t - t^2 + 2t^3$ in the given basis. If the vector is not in the subspace, explain why not. Clearly state any change-of-basis matrices you employ.

12-60 | 4] > mel 000 | Super. Sinceristent

The polynomial is not in the subspace