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Applications, Inverses, Determinants(?) 
 
Traffic Control Problem 

 
 

𝑥 + 𝑦 = 20 
80 = 𝑦 + 𝑧 
𝑧 = 𝑥 + 60 

 

{
𝑥 + 𝑦 = 20
𝑦 + 𝑧 = 80

−𝑥 + 𝑧 = 60
 

 

[
1 1 0
0 1 1

−1 0 1
   

20
80
60

] 

Solve. 
 

[
1 0 −1
0 1 1
0 0 0

   
−60
80
0

] 

 
𝑥 − 𝑧 = −60 
𝑦 + 𝑧 = 80 

 
Negative values of a variable reverse the flow (the traffic flows in the opposite direction of the arrow on 
the graph). Positive goes with the arrow. If the system is dependent, then you have to choose the free 
variable to obtain the traffic pattern. 
 
 
Circuit Problem. 𝑉 = 𝐼𝑅 
 
Set up (in the case) three equations of the loop currents 𝐼1, 𝐼2, 𝐼3 to solve for each of the currents. 
 
 
 
 
 
 



 

 
 

10 = 50𝐼1 − 50𝐼3 + 25𝐼1 − 25𝐼2 + 𝐼1 
0 = 25𝐼2 − 25𝐼1 + 𝐼2 − 𝐼3 + 30𝐼2 
0 = 𝐼3 − 𝐼2 + 50𝐼3 − 50𝐼1 + 55𝐼3 

 
 

76𝐼1 − 25𝐼2 − 50𝐼3 = 10 
−25𝐼1 + 56𝐼2 − 𝐼3 = 0 

−50𝐼1 − 𝐼2 + 106𝐼3 = 0 
 
Solve in a matrix. 
 

𝐼1 = 0.244934 … , 𝐼2 = 0.111427 … , 𝐼3 = 0.116586 … 
 
 
Interpolating polynomial problems. 
 
Interpolate a quadratic polynomial (degree 2) to pass through these three points. 
General quadratic equation is 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑦 
 
Red point (1,4): 𝑎(1)2 + 𝑏(1) + 𝑐 = 4  → 𝑎 + 𝑏 + 𝑐 = 4 
Orange point (2,1):  𝑎(2)2 + 𝑏(2) + 𝑐 = 1  → 4𝑎 + 2𝑏 + 𝑐 = 1 
Yellow point (5,6): 𝑎(5)2 + 𝑏(5) + 𝑐 = 6  → 25𝑎 + 5𝑏 + 𝑐 = 6 
 



 
𝑎 = 1.16666 … , 𝑏 = −6.5, 𝑐 = 9.33333 …. 

𝑎 =
7

6
, 𝑏 = −

13

2
, 𝑐 =

28

3
 

 

𝑦 =
7

6
𝑥2 −

13

2
𝑥 +

28

3
 

 
Inverses. 
 

𝐴𝐴−1 = 𝐼 
𝐴−1𝐴 = 𝐼 

 
𝐴−1 this is the inverse of A (or A-inverse). 
For any matrix to have an inverse, it must first be square (or the above relations are impossible). But not 
all matrices have inverses. 
For 2x2 matrices, there is an actual formula for the inverse. For larger matrices, there is a computation 
process where we can obtain the inverse. 
 

𝐴 = [
𝑎 𝑏
𝑐 𝑑

] 

 

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐
[

𝑑 −𝑏
−𝑐 𝑎

] 

 
The inverse will exist as long as 𝑎𝑑 − 𝑏𝑐 ≠ 0. 
 

𝐴 = [
1 2
4 7

] 

 

𝐴−1 =
1

7 − 8
[

7 −2
−4 1

] = [
−7 2
4 −1

] 



 

𝐴𝐴−1 = [
1 2
4 7

] [
−7 2
4 −1

] = [
1(−7) + 2(4) 1(2) + 2(−1)

4(−7) + 4(7) 4(2) + 7(−1)
] = [

1 0
0 1

] 

 

𝐴−1𝐴 = [
−7 2
4 −1

] [
1 2
4 7

] = [
−7(1) + 2(4) −7(2) + 2(7)

4(1) − 1(4) 4(2) − 1(7)
] = [

1 0
0 1

] 

 
𝐴𝑥 = 𝑏 

Like: 
𝑚𝑥 = 𝑏 

 
𝐴−1𝐴𝑥 = 𝐴−1𝑏 

𝑥 = 𝐴−1𝑏 
 

[
1 −2

−1 3
|

−1
3

] 

 

𝐴 = [
1 −2

−1 3
] , 𝑏 = [

−1
3

] 

 

𝑥 = [
3
2

] 

 
Check with inverses. 
 

𝐴−1 =
1

3 − 2
[
3 2
1 1

] = [
3 2
1 1

] 

 

𝐴−1𝑏 = [
3 2
1 1

] [
−1
3

] = [
3(−1) + 2(3)

1(−1) + 1(3)
] = [

3
2

] 

 
 
Properties of inverses: 

(𝐴𝑇)𝑇 = 𝐴, (𝐴−1)−1 = 𝐴 
(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 , (𝐴𝐵)−1 = 𝐵−1𝐴−1 

 
𝐴𝐵(𝐴𝐵)−1 = 𝐴𝐵𝐵−1𝐴−1 = 𝐴(𝐼)𝐴−1 = 𝐴𝐴−1 = 𝐼 

 
(𝐴−1)𝑇 = (𝐴𝑇)−1 

 
Elementary matrices, 𝐸𝑖  
A matrix that has the effect of a row operation. 
 

𝐴 = [
1 1 2
2 3 0

−1 1 4
] , 𝐼 = [

1 0 0
0 1 0
0 0 1

] 

 
𝑅1 + 𝑅3 → 𝑅3 

 



𝐴1 = [
1 1 2
2 3 0
0 2 6

] , 𝐸1 = [
1 0 0
0 1 0
1 0 1

] 

 
If you multiply A by 𝐸1 you obtain 𝐴1 
 

𝐸1𝐴 = 𝐴1 
 

𝑅1 → 𝑅2 
 

[
0 1 0
1 0 0
0 0 1

] 

 
(𝐸𝑛 ∙ … 𝐸2𝐸1)𝐴 = 𝐼 

(𝐸𝑛 ∙ … 𝐸2𝐸1) = 𝐴−1 
 
Because of this, there is a row operation process to find the inverse 
 

[𝐴 𝐼] → [𝐼 𝐴−1] 
 

[
1 −2

−1 3
   

1 0
0 1

] 

 
𝑅1 + 𝑅2 → 𝑅2 

 

[
1 −2
0 1

   
1 0
1 1

] 

 
2𝑅2 + 𝑅1 → 𝑅1 

 

[
1 0
0 1

   
3 2
1 1

] 

 

𝐴−1 = [
3 2
1 1

] 

 
 
 
Invertible matrix theorem. 
A is a square matrix. The following statements are equivalent: 

1. A is invertible (A has an inverse) 
2. A is row equivalent to the identity 
3. A has n pivots 
4. The equation 𝐴𝑥 = 0 has only the trivial solution 
5. The columns of A are linearly independent 
6. The linear transformation 𝑥 ↦ 𝐴𝑥 is one-to-one. 
7. The equation 𝐴𝑥 = 𝑏 has at least one solution for each b in 𝑅𝑛 
8. The columns of A span 𝑅𝑛 
9. The linear transformation 𝑥 ↦ 𝐴𝑥 maps 𝑅𝑛 onto 𝑅𝑛 



10. There is an 𝑛 × 𝑛 matrix 𝐶 such that 𝐶𝐴 = 𝐼 
11. There is an 𝑛 × 𝑛 matrix 𝐷 such that 𝐴𝐷 = 𝐼 
12. 𝐴𝑇 is invertible. 

 
If one is true, all the remaining 11 are true. If one is false, then all the remaining 11 are false. 
 
We’ll do determinants next week. 
 
 
 
 


