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Finish Series Tests
Power Series

Write 0.46 as a series, and use that to write the equivalent fraction.
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Add these together (and continue the pattern) we can get 0.464646...
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We might think that a=46, but that only works if we start with n=1
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My first number would not be 0.46, it would 46.
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This will work for our geometric series.
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See Series Practice handout for the discussion.
Power Series.

Convergence or divergence of power series.
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We want to know for which values of x does the series converge.

Usually, the best bet for determining convergence is the ratio test.



Recall the ratio test compares a, term with a,,;; and if the limit is less than 1, the series converges, and
if it is greater than 1, it diverges; and if it is equal to 1, the test is indeterminant.
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The interval of convergence is the values of x for which the series converges. So far: (—2,0).
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The radius of convergence is 1. If my interval is (a, b), then the radius of convergenceis R = Ta

To find the full interval of convergence, we have to check the endpoints: does the series converge at -2
or at 0.
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By the p-series, this series converges at x = —2.
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This converges by the alternating seriesat x = 0

So the full interval of convergencesis [-2,0]or,—2 < x <0

General procedure:

Start with ratio test (usually)

Find general conditions on an open interval for x

If non-infinite, then also test the endpoints to see if one, both or neither are included.



