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Power Series (6.1/6.2)

Creating power series for rational functions — or functions whose derivatives are rational functions (log
functions and arctangent functions)
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Starting with the rational function, and converting the rational function into a power series.
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Rewrite f(x) as Yin=o a(x™), which will be our power series expression for the same function.

Suppose

f&x) =

1—x
Write this function as a power series.

OEDIEIED
n=0

What we are claiming here is that for every value of x for which the power series converges, the sum of
the power series for a particular value of x in the convergent interval will be the same as the value of the
rational expression.

What if our rational function is a little more complicated?
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How would | create a power series for this function?
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For our simplest cases f(x) = %, match the rational function to the formula

1) Check the sign of the u(x) in the denominator, and
2) make the constant in the denominator a +1 (by multiplying as needed).

The u function cannot be “complicated” by having multiple terms in it. The most complicated u(x) you
are allowed is of the form (x — ¢)?

If you have an expression like x? + 2x that can’t be u(x).

Example.
() = 2x
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How do | turn this into a power series?
Complete the square
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All of the expressions we’ve created so far, all assume the interval of convergence is centered at O (or
some other natural point based on the expression itself.

In a power series, (x-c), the center of your interval of convergence will be at c.

In our first three examples, the center of the interval of convergence is at 0 since it’s just x raised to
some power. In the last example, the center of the interval of convergence naturally ended up at x=-2.

We can force the center of the interval of convergence to be at a particular location.
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Center the interval of convergence at x=2.
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Werite as power series centered at x=2.
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Recall that - (In(x)) = - and = (arctan(x)) =

Will need to shift the center of the interval of convergence off zero in order to write a power series for it
because the function is not defined at zero.
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Power series for - centered at x=1, is
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In order to get the power series for the In (x) function, | take the antiderivative of the expression.
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The value of Cis the value of x at the center of the interval of convergence: x=1... therefore C=0.
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Do the same thing for arctan(x).
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C = 0 because arctan(0) is 0 (and 0 is the center of the interval of convergence).

So what if we have a rational expression like
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Now what?
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First derivative:
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A formula for a power series for a rational expression with a squared denominator:
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Our example had a cube in the denominator (around the whole thing)

Continue taking derivatives:
2" derivative:
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Or the more complex case:
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Now we can set up our power series:

Based on the last formula:
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Recall from last time, we can find the interval of convergence by doing a ratio test to determine for
which values of x the series converges.
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Radius is % To finish finding the interval, check the endpoints!!!!
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Diverges as k goes to infinity since they are in the numerator.
Likewise for the left endpoint.
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So the interval of convergence (— \/_E,\/_E).

Next time we do Taylor Series.






