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Series Tests, continued
Geometric Series Test

If a series is geometric Y.o—o ao(r)™, then if |r| < 1 the series converges, and if || = 1, the series
diverges.
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== < 1 so we can say that the series converges.

Moreover, have a formula for the sum, if the series converges:
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|— Z| < 1 so the series converges.

The infinite sumis S = —% = —

4

(-2

[y
NI

Telescoping Series
- a
R e
n+b)(n+c)
n=1

Example.
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Apply partial fractions to split these into two terms.
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What is the infinite sum?
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If the factors in the denominator differ by 2
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Test here is basically, after applying partial fractions, does the final term in the series have a limit that is
finite? If yes, then converges. If no, diverges.
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This series diverges.

This limit goes to infinity.
In the textbook, they start their geometric series at n=1, and then their powers are n-1 in the formula.
Test for Divergence/Nth-term test
If the limit of the sequence of sums for our series do not have a limit of 0, then the sum of the series
diverges.
If we have
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And lim a,, # 0, then the series diverges.
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Conversely, if lim a,, = 0, it doesn’t tell you anything, the test is inconclusive. The series might
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converge, or it might diverge.

Integral Test

Cannot determine the value of the sum, but if we calculate the area under the curve as an estimate
(think Reimann sums with Ax = 1), then if the integral (area) converges, then the sum converges, and if
the area (integral) diverges, then the sum diverges.

Ym=10y and a, = f(n), then if floof(x)dx converges, then so does the sum. If it diverges, so does the
sum.
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The harmonic series 1/n diverges, but the — series converges.



P-series Test
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Test: if p>1, the series converges. If p < 1, the series diverges.
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Ex. fildx = fx_idx if you integrate, the power rule makes the exponent positive. x1/2 when you plug
x2
in infinity, this positive power will go to infinity. This is true any time the exponent is less than 1.
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Ex. fidx = [ x~11dx which will become x %! which is still a negative exponent, and so when you
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put in infinity, you are still dividing by a big number it converges.

Error on the integral test, when a,, = f(n)

E < fwf(x) dx
N

If you want to estimate the number of terms required to achieve a particular error, then use the
resulting formula to solve for N (and then round to the next larger integer).



