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Series Tests Continued 
 
Alternating Series Tests (5.5) 
Error estimates (5.3/5.5) 
Comparison tests? (5.4) 
 
Alternating Series test 
An alternating series looks like: 
 

𝑎𝑛 = (−1)𝑛𝑏𝑛 
(𝑏𝑛 is always positive) 
Recall that (−1)𝑛 = cos(𝑛𝜋) 
 
sin⁡(𝑛)  is not an alternating series because even though the sign is changing, it is not changing with 
every term. 
 
Alternating Test says that if 𝑎𝑛 is an alternating series, then if lim

𝑛→∞
𝑎𝑛 = 0, then the series converges. (If 

the limit does not go to zero, then the series diverges.) 
 
Compare to the nth-term test or test for divergence: 
If a series defined in terms of 𝑎𝑛 has lim

𝑛→∞
𝑎𝑛 ≠ 0, then the series diverges. If the limit is zero, the test is 

inconclusive. 
 
The combination here:  
If the limit does not go to zero, any series diverges. 
If the series is alternating, then if the limit zero the series converges. 
Otherwise, inconclusive. 
 
Absolute convergence vs. conditional convergence 
 
Conditional convergence means that the alternating series with converge because it is alternating.  
Absolute convergence means that the series will converge even if we remove the alternating component 
(we take the absolute value). 
 
Conditional convergence: 𝑎𝑛 is alternating and lim

𝑛→∞
𝑎𝑛 = 0 

Absolute convergence: 𝑎𝑛 converges and |𝑎𝑛| converges. 
 
Alternating harmonic series: 

∑
(−1)𝑛

𝑛

∞

𝑛=1

 

 

lim
𝑛→∞

(−1)𝑛

𝑛
= 0 

 



The alternating harmonic series converges. 

But as we saw in the last class with the integral test, this series ∑
1

𝑛
∞
𝑛=1  diverges. 

The alternating harmonic series is conditionally convergent. 
 
On the other hand: 

∑
(−1)𝑛

𝑛2

∞

𝑛=1

 

 

lim
𝑛→∞

(−1)𝑛

𝑛2
= 0 

 
Does converge by the alternating series test. 
If we take the absolute value: 
 

∑
1

𝑛2

∞

𝑛=1

 

 
And by the p-series, this series converges also. 
So our original series converges absolutely. 
 
The limit going to zero does not tell us anything after taking the absolute value. We need to apply a 
different test. 
 
We can’t apply the integral test if the series is alternating. 
(−1)𝑥 is not a continuous function, and therefore we can’t integrate it. If we want to apply the integral 
test, we have to first apply the absolute value. 
 
Error calculation for the alternating series test: 
 

𝐸 ≤ |𝑎𝑛+1| 
 
If you stop counting at n terms, the maximum possible error is the absolute value of the next term. 
 
For the integral test error: 

𝐸 ≤ ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑁

 

With 𝑎𝑛 = 𝑓(𝑛) and N being the number of terms you stopped counting at. 
Maximum error is the tail of the integral after you stop counting. 
 
Find the error on the series   

∑
(−1)𝑛

𝑛2

∞

𝑛=1

 

 
For 15 terms. 
 



𝐸 ≈ |
(−1)16

162
| = 0.0039… ≈ 0.004 

 
 
If I apply the integral test to this problem it would be incorrect because I can’t integrate with the (−1)𝑛. 
 
If I wanted the error on  

∑
1

𝑛2

∞

𝑛=1

 

Then I would use the integral test. 
Estimate the error after 15 terms. 
 

𝐸 ≈ ∫
1

𝑥2
𝑑𝑥

∞

15

= −
1

𝑥
|
15

∞

= 0 +
1

15
= 0.06666… 

 
To determine the number of terms needed to ensure that the sum was within a given error range. 
 
Estimate the series 

∑
(−1)𝑛

𝑛2

∞

𝑛=1

 

To within 𝐸 ≤ 0.00001 = 10−5 

|
(−1)𝑛

𝑛2
| ≈ 10−5 

 
1

𝑛2
≈ 10−5 

 

𝑛2 ≈ 105 
 

𝑛 ≈ √105 ≈ 316.227766… 
 

𝑛 = 317 
 
Estimate the number of terms needed to find the sum of  

∑
1

𝑛2

∞

𝑛=1

 

To withing 𝐸 ≤ 10−5. I would need to use the integral test. After integrating: 
 

10−5 ≈ 0 +
1

𝑁
 

 

𝑁 = 105 = 100,000 
 
I would need 10,000 terms to find the value of the sum to this level of accuracy. 
 



Comparison Tests (5.4) 
 
Two comparison tests: 
Direct comparison test and the limit comparison 
 
Direct comparison test says that if I have two series, 𝑎𝑛 and 𝑏𝑛 are both positive, and 𝑎𝑛 ≤ 𝑏𝑛 and 𝑏𝑛 
converges, then 𝑎𝑛 also converges. If 𝑎𝑛 ≥ 𝑏𝑛 and 𝑏𝑛 diverges, then 𝑎𝑛 also diverges. 
 

 
 
 
Inequalities are very strict in the direct comparison test. 
For convergence, 𝑘 as a constant 
 

1

𝑛
⁡𝑣𝑠.

1

𝑛 + 𝑘⁡
 

 
Which of these is bigger? 
 

1

𝑛 − 1
≥
1

𝑛
 

 
If you are proving divergence, then subtraction in the denominator makes the expression larger, use a 
simplified version of the same expression for the direct comparison 
 

1

𝑛2
≥

1

(𝑛 + 1)2
 

Or 
1

𝑛2
≥

1

𝑛2 + 1
 



If you are proving convergence, then addition in the denominator makes the expression smaller, use a 
simplified version of the same expression for the direct comparison 
 
In the numerator subtraction makes something smaller, and addition makes it bigger. 
 

𝑛 + 1

𝑛3
≥

1

𝑛2
 

This would not work as a direct comparison, because you want the convergent series that you know to 
be bigger than the series you are comparing it to. 
 
Example. 

∑
1

2𝑛 + 1

∞

𝑛=1

 

 

Consider that  ∑
1

2𝑛
∞
𝑛=1  this is a geometric series, r=1/2.  Therefore it converges.  This is very similar, but 

not identical. Can we show that the series of our example are smaller than the geometric series? If so, 
we can use the direct comparison to show convergence. 
 

1

2𝑛
≥

1

2𝑛 + 1
 

??? 

n=1, 
1

2
≥

1

3
 

n=2, 
1

4
≥

1

5
 

etc. 
 

So, by the direction comparison, the 
1

2𝑛+1
≤

1

2𝑛
, and since ∑

1

2𝑛
∞
𝑛=1  converges by the geometric series 

test, we also know that the series ∑
1

2𝑛+1
∞
𝑛=1  converges also. 

 
Example. 

∑
√𝑛 + 1

𝑛 − 1

∞

𝑛=3

 

Think about possibly comparing to 

∑
√𝑛

𝑛

∞

𝑛=3

= ∑
1

√𝑛

∞

𝑛=3

 

Is this true? 

√𝑛 + 1

𝑛 − 1
≥

1

√𝑛
=
√𝑛

𝑛
 

 

√𝑛 + 1

𝑛 − 1
≥
√𝑛 + 1

𝑛
≥
√𝑛

𝑛
 

This is true. The numerator is bigger on the left, so the whole fraction is bigger. If I make the 
denominator smaller, the whole fraction is bigger.  
 



The series 
√𝑛+1

𝑛−1
≥

1

√𝑛
, and therefore, since ∑

1

√𝑛
∞
𝑛=3  diverges by the p-series test, the series ∑

√𝑛+1

𝑛−1
∞
𝑛=3  

also diverges. 
 
The limit comparison is similar in concept, but it doesn’t rely on inequalities, it relies on a ratio, and this 
will make the test less sensitive to the additions and subtractions in our series. 
 
We will pick that up next time.  
There is no class on Tuesday for Fall break. 
 
 


