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Differential Equations, continued 
Euler’s method, continued 
Separable Equations/Logistic Equations 
 
We left off with Euler’s Method 
 
The basis of Euler’s method is basically calc 1: we approximate the tangent line at the point where we 
start, and we move along for a short distance. The new point in space has a new slope based on the 
differential equation, we re-approximate the slope of the new tangent line at that point, and repeat. 
Some assumptions for accuracy are that the curve (to the solution) is smooth and we don’t have vertical 
asymptotes (vertical tangents) near where were are approximating. 
 
Start at (𝑥0, 𝑦0) ↔ 𝑦(𝑥0) = 𝑦0, Then we take an iterative step of approximating the tangent from the 
slope. 
 

𝑚0 = 𝑓(𝑥0, 𝑦0) 
Where 𝑦′ = 𝑓(𝑥, 𝑦) 

𝑦1 = 𝑚0(Δ𝑥) + 𝑦0 
 
Repeat: 

𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 
 

𝑦𝑛+1 = 𝑚𝑛(Δx) + 𝑦𝑛 
𝑥𝑛+1 = 𝑥𝑛 + Δ𝑥 

 
 

Δ𝑥 = ℎ =
𝑥𝑛 − 𝑥0

𝑛
 

 
We have the differential equation 𝑦′ = 𝑦(3 − 𝑥𝑦), and we want to approximate the solution to the 
differential equation after 10 steps if 𝑦(0) = 1, 𝑎𝑛𝑑 Δ𝑥 = 0.1. 
 
We have the differential equation 𝑦′ = 𝑦(3 − 𝑥𝑦), and we want to approximate the solution to the 
differential equation at 𝑦(1) with 10 steps starting at 𝑦(0) = 1. 
 

(𝑥0, 𝑦0) = (0,1) 
 

𝑚0 = 1(3 − 0(1)) = 3 

𝑦1 = 3(0.1) + 1 = 1.3 
 
New position: 

(𝑥1, 𝑦1) = (0.1, 1.3) 
 

𝑚1 = (1.3)(3 − (0.1)(1.3)) = 3.731 

𝑦2 = 3.731(0.1) + 1.3 = 1.6731 
 



New position: 
(𝑥2, 𝑦2) = (0.2,1.6731) 

 

𝑚2 = (1.6731)(3 − 0.2(1.6731)) = 4.4594 … 

𝑦3 = 4.4594 … (0.1) + 1.6731 = 2.11904 … 
 
New position: 

(𝑥3, 𝑦3) = (0.3,2.11904 … ) 
 
Continue in this process until we get to (1, 𝑦10) 
 
Rest of the calculations in the Excel file. 
 
Separable Differential Equations – these are first order equations that primarily depend on our 
integration techniques in order to solve.  We can algebraically separate the y variables to one side of the 
equation from the x variables that are left on the other side. 
 

𝑦′ =
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) = 𝑔(𝑥)(ℎ(𝑦)) 

 

We can solve for 𝑦(𝑥) by 
𝑑𝑦

ℎ(𝑦)
= 𝑔(𝑥)𝑑𝑥 

 
Then  

∫
𝑑𝑦

ℎ(𝑦)
= ∫ 𝑔(𝑥)𝑑𝑥 

 
 
Usually, this leaves us with an implicit solution and we may or may not be able to solve for y explicitly 
(as a function), but it gives us an expression for the shape of the curve for any initial condition. 
 
Example. 
Solve the differential equation 

𝑦′ =
√1 − 𝑦2

𝑥 − 1
 

 

𝑑𝑦

𝑑𝑥
(𝑑𝑥) =

√1 − 𝑦2

𝑥 − 1
(𝑑𝑥) 

 

1

√1 − 𝑦2
× 𝑑𝑦 =

√1 − 𝑦2

𝑥 − 1
𝑑𝑥 ×

1

√1 − 𝑦2
 

 
𝑑𝑦

√1 − 𝑦2
=

𝑑𝑥

𝑥 − 1
 

The variables are now separated 
 
Integrate on each side with the corresponding variable. 



 

∫
𝑑𝑦

√1 − 𝑦2
= ∫

𝑑𝑥

𝑥 − 1
 

 
arcsin(𝑦) = ln(𝑥 − 1) + 𝐶 

 
𝑦 = sin(ln(𝑥 − 1) + 𝐶) 

 
𝑦(2) = 0 

 
arcsin(0) = ln(2 − 1) + 𝐶 

 
0 = 0 + 𝐶 → 0 

 
arcsin(𝑦) = ln(𝑥 − 1) 

 
 

 
 
Example. 
 
A typical population growth problem, the population grows in proportion to the current population. 
 

𝑦′ = 𝑘𝑦 
 

𝑑𝑦

𝑑𝑥
= 𝑘𝑦 

 
𝑑𝑦

𝑦
= 𝑘𝑑𝑥 

 

∫
1

𝑦
𝑑𝑦 = 𝑘 ∫ 𝑑𝑥 

 
ln|𝑦| = 𝑘𝑥 + 𝐶 

 

𝑦 = 𝑒𝑘𝑥+𝐶 = 𝑒𝑘𝑥𝑒𝐶 = 𝑦0𝑒𝑘𝑥 
 

𝑦(𝑥) = 𝑦0𝑒𝑘𝑥 



 
Logistic population models: 
 
Derive from autonomous differential equations: (no explicit independent variable) 

𝑦′ = 𝑓(𝑦) 
 
 

𝑦′ = 𝑦(𝑦 − 5) 
 
The direction fields don’t depend on x, and so the slope is the same everywhere for the same y-value. 

 
 
Equilibria where the slope is 0 for a constant y value.  Here, y=0, y=5. 
This s-curve shape between the equilibria, and exponential (approx.) above or below the equilibria. 
 
Y=5 in this model is a threshold (extinction line). The population will grow above this line, but if you fall 
below the line, then the population will collapse to 0. (unstable equilibrium) 
 
If we change the signs: 

 
 
In this case, y=5 is called a carrying capacity (think of it as the maximum sustainable population for the 
area’s resources). You grow up to this equilibrium, or if above, fall back to it.  (stable equilibrium) 
 



𝑦′ = 𝑦(𝑦 − 5) 
 

𝑑𝑦

𝑦(𝑦 − 5)
= 𝑑𝑥 

 
In order to integrate the left side of the equation, I need to apply partial fractions. 
 

𝐴

𝑦
+

𝐵

𝑦 − 5
=

1

𝑦(𝑦 − 5)
 

 
𝐴𝑦 − 5𝐴 + 𝐵𝑦 = 1 

 
𝐴 + 𝐵 = 0 
−5𝐴 = 1 

𝐴 = −
1

5
 

𝐵 =
1

5
 

 

∫
−

1
5

𝑦
𝑑𝑦 + ∫

1
5

𝑦 − 5
𝑑𝑦 = ∫ 𝑑𝑥 

 

−
1

5
ln(𝑦) +

1

5
ln(𝑦 − 5) = 𝑥 + 𝐶 

 
ln(𝑦 − 5) − ln(𝑦) = 5𝑥 + 𝐶 

 

ln (
𝑦 − 5

𝑦
) = 5𝑥 + 𝐶 

𝑦 − 5

𝑦
= 𝐴𝑒5𝑥 

 

𝑦 − 5 = 𝑦𝐴𝑒5𝑥 
 

𝑦 − 𝑦𝐴𝑒5𝑥 = 5 
 

𝑦(1 − 𝐴𝑒5𝑥) = 5 
 

𝑦(𝑥) =
5

1 − 𝐴𝑒5𝑥
 

 
The value in the numerator is related to the carrying capacity/threshold value 
A is related to the initial condition relative to the carrying capacity. 
 
This is the kind of function that produces our s-curve. 
 
Next week: we start parametric equations/vectors. 


