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Calculus on vectors and parametric equations (7.2) 
 
The mechanics of calculus on a set of parametric equations or on a vector are quite straight forward. 
The issue will be how do we relate the derivative in parametric form to the traditional derivative or 
calculus concepts. 
 
Example. 
 

Find the derivatives 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 for the set of parametric equations 𝑥(𝑡) = 𝑡2 + 1, 𝑦(𝑡) = 𝑒𝑡 − 6 

 

𝑥′(𝑡) =
𝑑𝑥

𝑑𝑡
= 2𝑡 

 

𝑦′(𝑡) =
𝑑𝑦

𝑑𝑡
= 𝑒𝑡 

 
In vector form, we take the derivative component by component. 
 

𝑟(𝑡) = 〈𝑡2 + 1, 𝑒𝑡 − 6〉 
 

𝑟′(𝑡) = 〈2𝑡, 𝑒𝑡〉 
 
What is the slope of the tangent line to a curve in parametric form? 
 

𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦
𝑑𝑡

)

𝑑𝑥
𝑑𝑡

 

 
Let’s do that for our curve. 
 

𝑑𝑦

𝑑𝑥
=

𝑒𝑡

2𝑡
 

 
What is slope of the tangent line at 𝑡 = 1? 
 

𝑑𝑦

𝑑𝑥
(𝑡 = 1) =

𝑒

2
 

 
Equation of the tangent line at 𝑡 = 1, to get the (x,y) that goes into the line, plug t=1 into the original set 
of equations. 
 

𝑥(1) = 2 
𝑦(1) = 𝑒 − 6 

 
(𝑦 − 𝑦1) = 𝑚(𝑥 − 𝑥1) 



 

𝑦 − (𝑒 − 6) =
𝑒

2
(𝑥 − 2) 

 
Can solve that for y. 
 
What are the critical points of the curve (if any)? Where is the slope of the tangent line horizontal? 

(Recall, this is where the extrema are.) 
𝑑𝑦

𝑑𝑥
= 0 and that implies that 

𝑑𝑦

𝑑𝑡
= 0. 

 

In this example 
𝑑𝑦

𝑑𝑥
=

𝑒𝑡

2𝑡
 and we can conclude that there are no horizontal tangents, because 

𝑑𝑦

𝑑𝑡
= 𝑒𝑡 

which is never 0. 
 
Where is the slope of the tangent line vertical? 
Vertical lines have a slope which is undefined, and so that can happen where there is a zero in the 

denominator: 
𝑑𝑥

𝑑𝑡
= 0.  

 
In this example, the tangent line is vertical when 𝑡 = 0. 
 

 
 
What about the second derivative? 
 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
[
𝑑𝑦

𝑑𝑥
] =

𝑑

𝑑𝑥
[

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

] =

𝑑
𝑑𝑡 [

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

]

𝑑𝑥
𝑑𝑡

 

 

Procedurally: take the first derivative and find 
𝑑𝑦

𝑑𝑥
 as above. 

 

This gives us an expression for 
𝑑𝑦

𝑑𝑥
 as a function of t. 



Now, take the derivative of that 
𝑑𝑦

𝑑𝑥
 with respect to t, and the divide the result by another copy of 

𝑑𝑥

𝑑𝑡
 

 
Example. 

𝑥(𝑡) = 𝑡2 + 1, 𝑦(𝑡) = 𝑒𝑡 − 6 
 

𝑥′(𝑡) = 2𝑡, 𝑦′(𝑡) = 𝑒𝑡 
 

𝑑𝑦

𝑑𝑥
=

𝑒𝑡

2𝑡
 

 
Take the derivative of the first derivative with respect to t. 
 

𝑑

𝑑𝑡
[
𝑑𝑦

𝑑𝑥
] =

𝑑

𝑑𝑡
[
𝑒𝑡

2𝑡
] =

𝑒𝑡(2𝑡) − 2𝑒𝑡

4𝑡2
=

2𝑒𝑡(𝑡 − 1)

4𝑡2
=

𝑒𝑡(𝑡 − 1)

2𝑡2
 

 

𝑑2𝑦

𝑑𝑥2
=

[
𝑒𝑡(𝑡 − 1)

2𝑡2 ]

2𝑡
=

𝑒𝑡(𝑡 − 1)

4𝑡3
 

 
Recall the second derivative gives us concavity. 
 
Where does the second derivative change sign?  One sign change takes place at t=0, and there is a sign 
change when t=1.  Does this agree with the graph? Yes, this is consistent with the graph. The concavity is 
upward (+) for t<0.  It’s negative (downward) for 0<t<1, and then positive (upward) again for t>1. 
 
𝑡 = 0, 𝑡 = 1 are inflection points. 
 
If we want to take more derivatives, we can by continuing to take the derivative with respect to t of the 
previous derivative and then dividing by dx/dt again each time. 
 
What about integration?  How do we find the area under a curve defined parametrically? 
 
Given: a parametric curve is defined by 𝑥(𝑡) and 𝑦(𝑡) on some interval, and the curve does not 
intersection with itself on that interval. 
 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝑏

𝑎

= ∫ 𝑦(𝑡)
𝑑𝑥

𝑑𝑡
𝑑𝑡

𝑏

𝑎

 

 
Find the area under the curve 𝑥(𝑡) = 𝑡2 + 1, 𝑦(𝑡) = 𝑒𝑡 − 6 on the interval (0,1). 
 

𝐴 = ∫ (𝑒𝑡 − 6) 2𝑡 𝑑𝑡
1

0

= ∫ 2𝑡𝑒𝑡 − 12𝑡 𝑑𝑡
1

0

= 

2𝑡𝑒𝑡 − ∫ 2𝑒𝑡𝑑𝑡
1

0

− 6𝑡2 = 2𝑡𝑒𝑡 − 2𝑒𝑡 − 6𝑡2|0
1 = 2𝑒 − 2𝑒 − 6 − 0 + 2 + 0 = −4 

 
𝑢 = 2𝑡, 𝑑𝑣 = 𝑒𝑡𝑑𝑡 
𝑑𝑢 = 2𝑑𝑡, 𝑣 = 𝑒𝑡 



 
The negative sign is consistent with the graph because the curve is under the x-axis, and so the signed 
area is negative. 
 
Arc length? 
In parametric form 

𝑠 = ∫ √(
𝑑𝑥

𝑑𝑡
)

2

+ (
𝑑𝑦

𝑑𝑡
)

2

𝑑𝑡
𝑏

𝑎

 

 
In vector form: recall that 𝑟(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 and the derivative was 𝑟′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡)〉. What is the 
length of the derivative vector? 
 

‖𝑟′(𝑡)‖ = √[𝑥′(𝑡)]2 + [𝑦′(𝑡)]2 = √(
𝑑𝑥

𝑑𝑡
)

2

+ (
𝑑𝑦

𝑑𝑡
)

2

 

 

𝑠 = ∫ ‖𝑟′(𝑡)‖
𝑏

𝑎

𝑑𝑡 

 
These are really the same formula, but one is in parametric form, and one is in vector form. 
 
Example. We can set up the arc length formula for our parametric curve example. Use (0,1) as the 
interval. 
 

𝑠 = ∫ √(2𝑡)2 + (𝑒𝑡)2𝑑𝑡
1

0

= ∫ √4𝑡2 + 𝑒2𝑡𝑑𝑡
1

0

 

 
This will need to be integrated numerically. 
 
Sometimes you need to use symmetry to get the arc length. 
 
For instance, suppose you want to find the length of the circumference of a circle. 
 

𝑥(𝑡) = 3 cos(𝑡) , 𝑦(𝑡) = 3 sin(t) 
 
The length of the circumference is the arc length one time around the circle. 
 

𝑠 = ∫ √(−3 sin(𝑡))2 + (3 cos(𝑡))2𝑑𝑡
2𝜋

0

= ∫ √9 sin2(𝑡) + 9 cos2(𝑡) 𝑑𝑡
2𝜋

0

= 

 

∫ √9(sin2(𝑡) + cos2(𝑡))𝑑𝑡
2𝜋

0

= ∫ 3√1
2𝜋

0

𝑑𝑡 = 3𝑡|0
2𝜋 = 3(2𝜋) = 6𝜋 = 2𝜋𝑟  

 

𝑠 = 4 ∫ √(−3 sin(𝑡))2 + (3 cos(𝑡))2𝑑𝑡

𝜋
2

0

 



We’re just finding the arc length in the first quadrant, and then multiplying by 4 to go all the way around 
the circle. 
 
If you get 0 for an arc length, this is a good sign that you need to invoke symmetry to find the length of 
the curve. 
 
This especially happens with trig functions that simplify to square functions that cancel with the square 
root (and should leave behind an absolute value). 
 
One of the other application related to arc length that we discussed earlier was surface area. 
 

𝑆 = ∫ 𝑟(𝑥)√1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏

𝑎

 

The 𝑟(𝑥) changed depending on the axis we were rotating around. 
 
In parametric form: 
 

𝑆 = ∫ 𝑅(𝑡)
𝑏

𝑎

√[𝑥′(𝑡)]2 + [𝑦′(𝑡)]2𝑑𝑡 

𝑅(𝑡) changes to either 𝑥(𝑡) as you rotate around the y-axis, or 𝑦(𝑡) as you rotate around the x-axis. 
 
If you wanted to find the surface area of a sphere, you can use this, but you will need to invoke 
symmetry using only half or a quarter of the circle. 
 
Next time we’ll talk about polar coordinates. 
 
 


