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Matrices 
 
In simplest terms, matrices are rectangular arrays of numbers.  One of the most common usages for 
them is as a means of obtaining solutions to (linear) systems of equations.  Computers like working with 
arrays of numbers much more than they like working with equations.  They also allow us to make 
generalizations about solutions to systems of equations that are independent of the size of the system.  
As we will see, it is also possible with matrices to solve for a single variable of a system without solving 
the whole thing. 
 

I. General Properties 
A. Size of Matrices 

Matrix sizes are described in two dimensions: rows x columns. 
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So the matrix in the above example is describes as a 3x2 matrix.  When entries in the matrix 
are numbered, they are likewise described in the row x column format.  The entry in the first 
row first column is a11.  The entry in the third row second column is a32. 
 
Matrices can be any dimension bigger than zero, from 1x1 to any nxm.  Some examples of 
matrices are below. 
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Here, we have a 1x1, 2x1, 5x1, 4x2 and an arbitrary mxn. 
 

B. Matrix Notation 
Capital letters are used to refer to matrices: A, I, etc.  The only letter used to describe a 
matrix is the zero matrix, which is represented by a 0.  Matrices are often boldfaced in typed 
text.  Occasionally, matrices will be represented by a single entry [aij], with i ranging from 1 
to m and j ranging from 1 to n. 
 
Letters with paired subscripts, as shown above, always represent entries of a matrix.  To 
differentiate between a single entry and the matrix represented by a general entry, the 
square brackets [] go around the matrix, while the individual entry lacks the brackets. 
 
To represent a row of matrix subscripted R is used: R1, R2, etc.  Similarly for columns: C1, C2, 
etc. 
 
Notation for operations on matrices will be address below in Section II. 
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C. Special Matrices 
a. Identity Matrix 

The identity matrix I is a square matrix (size nxn) with 1’s along the diagonal and 
zeros in all other entries.  When multiplied by another matrix of suitable size (see 
Section IIC below), AI=A the original matrix is result.  The identity matrix is also the 
result of multiplying a matrix by its inverse (see Section IIE below). AA-1=I.  
 
Below are examples of identity matrices of various sizes. 
 

 

1 0 0 0
1 0 0

1 0 0 1 0 0
1 , , 0 1 0 ,

0 1 0 0 1 0
0 0 1

0 0 0 1

 
   

     
      

    
 

 

 
b. Zero Matrix 

The zero matrix 0 stands in for the role of zero in matrix land.  The zero matrix, like 
the identity matrix, is actually a set of matrices of appropriate size, where all the 
entries are zero.  Under matrix multiplication, the result is always zero.  A0=0. 
 

   

0 0 0 0 0
0 0 0

0 0 0 0 0 0 0
0 , , 0 0 0 , , 0 0 0 ,

0 0 0 0 0 0 0
0 0 0

0 0 0 0 0

   
     

       
        

      
   

 

 
Unlike the identity matrix, the zero matrix need not be square.  It just needs to be 
whatever size is necessary to make the multiplication work. 

 
c. Triangular Matrix 

A triangular matrix is a matrix with entries that are potentially non-zero on the 
diagonal and potentially on one side of it, but are zero on the other side.  Triangular 
matrices can be divided into two classes: upper triangular if the entries below the 
diagonal are zero (i.e. the nonzero entries are in the upper half), and lower 
triangular if the entries above the diagonal are zero (i.e. the nonzero entries are in 
the lower half).  
 
Triangular matrices are useful because they make multiplication easier, and can be 
used to help solve systems of equations.  Triangular matrices must be square 
matrices (see Section e below). 
 

 

1 5 0 8
1 0 0

1 3 0 1 0 7
1 , , 4 2 0 ,

0 1 0 0 3 0
6 3 1

0 0 0 2
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− 
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d. Diagonal Matrix 
A diagonal matrix is a square matrix (see Section e) with nonzero entries only on the 
diagonal.  An identity matrix is a space case of a diagonal matrix with only ones on 
the diagonal. 
 

 

5 0 0 0
3 0 0

0 0 0 7 0 0
2 , , 0 1 0 ,

0 1 0 0 2 0
0 0 4

0 0 0 11

 
   −     −    −  
    

 

 

 
Diagonal matrices make it possible to do rapid matrix multiplication, and can be 
used to solve systems of equations.  Calculating operations like inverses and 
determinants are also made quite simple. 

 
e. Square Matrix 

A square matrix is a matrix with the same row and column dimensions: 1x1, 2x2, 
3x3, etc.  Certain operations like inverse and determinants are only defined on 
square matrices.  As we’ve seen above, identity matrices, triangular and diagonal 
matrices are all required to be square. 

 
f. Augmented Matrix 

“Augmented matrix” is a term used in solving systems of equations.  If a matrix 
(mxn) represents the coefficients of a system of equations and a column matrix 
(mx1) represents the solutions of the system, the augmented matrix includes both 
the coefficients and the solutions in a single matrix.  This form of the matrix is used 
in the Row Operation process of solving systems.  The other two methods use the 
matrices separately.  We will see how to do this in Section IV. 
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coefficient solutions augmented

     
     − −
     

− −          

 

 
 

II. Operations on Matrices 
A. Addition 

To add matrices, the matrices must first be of the same size.  Then, add the corresponding 
coordinates. 
 

1 2 7 8 1 7 2 8 8 10

3 4 3 2 3 ( 3) 4 ( 2) 0 2

+ +       
+ = =       − − + − + −       
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B. Scalar Multiplication 
Scalar multiplication is multiplying a matrix by a constant.  We do this by multiplying every 
entry of the matrix by the scalar. 
 

1 2 1(2) 2(2) 2 4
2

3 4 3(2) 4(2) 6 8

     
= =     

     
 

 
C. Matrix Multiplication 

Matrix multiplication requires that the two matrices be of appropriate sizes.  Unlike 
addition, they need not be exactly the same size.  Instead the “inside” dimensions must 
match.  For instance: an mxn matrix can be multiplied by an nxp matrix (in this order).  The 
result will be the outside dimensions: and mxp matrix.  This is so because the rows of the 
first matrix are multiplied by the columns of the second matrix. 
 

2 0 2( 3) 0(1)
3 5 7 8

1 1
1 6 4 5

3 4

− +   
− −    −  =    − 

−      

 

 
The c11 entry of the product is the product of row 1 of the A matrix times the column 1 of 
the B matrix: a11*b11+a12*b21, here: 2(-3)+0(1). 
 

2 0
3 5 7 8

1 1
1 6 4 5

3 4
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1( 3) 1(1) 1(5) 1(6) 1( 7) 1(4) 1(8) 1( 5)

3( 3) ( 4)(1) 3(5) ( 4)(6) 3( 7) ( 4)(4) 3(8) ( 4)( 5)

6 10 14 16

4 1 11 13

13

 
− −  −     − 

−  

− + + − + + − 
 = − − + − + − − + − + −
 

− + − + − − + − + − −  

− −

= −

− 9 37 44

 
 
 

− −  

 

 
Here, we multiplied a 3x2 matrix by a 2x4 matrix, resulting in a 3x4 matrix.  Notice the 
pattern that developed in the multiplication process.  
 
Because of this issue with the sizes of matrices, only square matrices can be switched in 
order and still produce a well-defined outcome; i.e. AB and BA are defined if the matrices 
are square; however, they need not be equal to each other.  Only special matrices obey the 
commutative property, such as the zero matrix (though the size may need to change), and 
the identity matrix (again, the size may need to change to be well-defined), and inverse 
matrices (see Section E).  And in most cases, even if AB is well-defined, BA will not match 
the correct dimensions and will not be defined at all. 
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The associative and distributive properties do still hold. 
 

D. Transpose 
The transpose of a matrix is found by exchanging the entries aij of a matrix A for aji of AT.  
That is to say the rows will become columns and the columns rows.  A matrix of the size mxn 
will be transposed to a matrix the size of nxm. 
 

2 0
2 1 3

1 1
0 1 4

3 4

T

 
−  − =    − 

−  

 

 
E. Inverse 

The inverse of a square matrix is a matrix so that A-1A=I and AA-1=I.  There are a number of 
ways to find the inverse of a matrix.  Perhaps the simplest is the use of an “augmented” 
matrix. 
 

 
1 2 1 0

3 4 0 1
A I

 
=  
 

 

 
By building a matrix with the matrix we wish to invert on the one side and the identity 
matrix on the other side, we can “solve” this matrix to find the inverse matrix.  The result 
will be a matrix with the identity on the left side and the inverse matrix on the right side.  
(We will see how to do this in Section IVA.)  Once we find the matrix, we can check it by 
multiplying by the original matrix to see if it does produce the identity. 
 

( )

3 1
1( 2) 2 1(1) 22 1

1 2 1 02 2
3 1

3 4 0 13 1
3 2 4 3(1) 42 2

2 2

    
− + + −−      

          = =    −        
− + + −      

    

 

 
Similarly, the check will work in the other direction as well. 
 
For a 2x2 matrix we can also find the inverse by finding the determinant (see Section F 
below).  This method will not work for larger matrices. 
 

1 1

det( )

a b d b
A A

c d c aA

−
−   

=  =   −   
 

 
Not all square matrices are invertible, and the formula above gives a clue as to why.  If the 
determinant of the matrix is zero, the matric cannot be inverted. 
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F. Determinant 
 

Determinants are a number that is calculated from the entries in a square matrix.  It can be 
helpful in finding inverses (of small matrices), and is useful in solving for solutions of a 
system of linear equations (see Section IVC below), and a number of other things.  
Determinants of small matrices (like 2x2) aren’t too difficult, but even 3x3 matrices become 
quite complicated, and larger matrices are much more complicated.  We will consider only 
the 2x2 case and the 3x3 case here.  Larger cases, except in the case of triangular or 
diagonal matrices, as we will see from the 3x3 case, can be reduced to the smaller case.  In 
triangular or diagonal matrices, only the multiplication along the main diagonal survives, so 
in this special cases, large matric determinants can also be found easily.   
 
In the 2x2 case, the formula for the determinant is det(A)=a11*a22-a12*a21.  Another way to 
think about this formula is to multiply along the main diagonal, and subtract the product 
along the second diagonal. 
 

1 2
det 1(4) 2(3) 4 6 2

3 4

  
= − = − = −  

  
 

 
In the case of a 3x3 matrix, the formula has nine matrix entries in it, and six terms.  Instead 
of writing it out in terms of the matrix entries, we can write out in terms of the first row and 
“sub-matrices”.  Consider the matrix below: 
 

11 12 13

22 23 21 23 21 22

21 22 23 11 12 13

32 33 31 33 31 32

31 32 33

det det det det

a a a
a a a a a a

a a a a a a
a a a a a a

a a a

  
             = − +            
              

 
The first term can be obtained by the row 1-column 1 term times the value of the 
determinant for the matrix obtained by ignoring the first row and the first column.  
Similarly, the second term is obtained by the row 1-column 2 term and the determinant of 
the entries left when the first row and the second column are covered up.  The third term is 
likewise obtained from the row 1-column 3 term and the determinant obtained from 
covering up the first row and the third column. 
 
Filling in the entries of the matrix with values we get: 
 

     

1 4 2
9 3 2 3 2 9

det 2 9 3 (1)det 4det ( 2)det
5 1 3 1 3 5

3 5 1

(1) 9( 1) (3)( 5) 4 2( 1) (3)( 3) 2 2( 5) 9( 3) 24 28 34 86

−  
             = − + −             − − − − − −           − − −   

= − − − − − − − − − − − = − − − = −

 

 
Some properties of determinants: 

• Switching a row or column with another in the matrix will change the sign of the 
determinant. 
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• If the matrix determinant is zero, then the matrix is not invertible. 

• A strategy for finding the determinant of very large matrices is to use row 
operations (described in Section G below) to convert the matrix to an equivalent 
triangular one.  This may be easier than working out the formula using sub-
matrices. 

• Notice that the terms of the 3x3 determinant are +/-/+.  In the 4x4 case would 
have signs of +/-/+/-, and so on for larger matrices. 

• In the formula above, we used row 1 as the basis for the formula, however, it 
works just as well using column 1 or any other row or columns in the matrix. 

• Multiplying a row by a scalar multiplies the determinant by that scalar.  
Multiplying a matrix by a scalar is like multiplying the determinant by cn (where 
n is the size of the matrix). 

 
G. Row Operations 

Row operations are a process that we will use below to solve a system of equations 
represented as a matrix.  There is a similar (and related) process of column operations which 
we will not cover explicitly. 
 
Row operations is a process related to elimination by addition in a system of equations.  
There are three possible row operations. 

• Switch two rows in a matrix. 

• Multiply a row by a scalar. 

• Add two rows together (with or without multiplying by a scalar). 
 

Consider the matrix we had that was formed to help us find the inverse of a square matrix. 

 
1 2 1 0

3 4 0 1
A I

 
=  
 

 

 
To use row operations to solve this matrix, we’d like to get the right side to look like the 
identity matrix, and then the right side will be the inverse.  We do this by row operations. 
 
For the identity matrix, we want the first entry (a11) to be 1, so that much is okay (if it were 
not 1, we could divide all the entries by that number).  We’d like to next eliminate the 3 in 
the second row.  To achieve this, I will add (-3)(row 1) to the second row = [-3   -6   -3    0] 
+[3   4   0   1] = [0   -2   -3   1].  The matrix now looks like this: 
 

 

1 2 2

1 2 1 0

3 4 0 1

1 2 1 0
3

0 2 3 1

A I

R R R

 
=  
 

 
− +   − − 

 

 
To clear the 2 in top row, second column, I can add these two rows together: 
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1 2 1

1 0 2 1

0 2 3 1
R R R

− 
+   − − 

 

 
Lastly, divide row 2 by -2. 
 

2 2

1 0 2 1

2 3 1
0 1

2 2

R R

− 
 − 
 −
 

 

 
Now, the last two columns of the matrix are the inverse of A that we had used in our 
example. 
 
These operations highlighted two of the row operations.  The last one, switching rows, is 
generally used in cases like below: 
 

3 2 1

0 4 3

1 5 2

− − 
 −
 
  

 

 
In most cases, we want the entry in the first row and first column to be 1.  Here, we could 
choose to divide by 3, and then work with fractions, or else, move the third row up to be 
row 1.  When doing these calculations by hand, this is easier for humans.  Your calculator 
will choose the brute force approach.  If the entry is 0, even the calculator will swap rows. 
 

 

III. Converting Systems of Equations to Matrix Equations 
In order to solve a system of equations by matrix methods, we first need to convert the 
system to matrices.  Depending on the method we are using we will either need one 
augmented matrix (row operations), or three matrices (inverses or Cramer’s Rule). 

 
Given a system of equations, as shown below, the augmented matrix contains the 
coefficients of the variables, and the solutions to the equations.  They are typically divided 
by a line. 
 

3 6 3 1 1 6

4 8 4 1 1 8

2 3 10 2 3 1 10

x y z

x y z

x y z

− + = − 
  

+ − =  −  
  − − + = − −  

 

 
To write the same system of equations in three matrices, we have one matrix for the 
coefficients of the variable, one column matrix for the variables, and one column matrix for 
the solutions.  We can test by matrix multiplication to see that this representation results in 
the original system. 
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3 6 3 1 1 6

4 8 4 1 1 8

2 3 10 2 3 1 10

x y z x

x y z y

x y z z

− + = −      
      + − =  −  =      
− − + = − −           

 

 
For the last set up, the coefficient matrix is usually labeled A, the variable matrix X, and the 
solution matrix B. 

 
 

IV. Solving Systems of Equations by Matrix Operations 
A. Solving by Row Operations 

To solve a system by row operations, like with the identity matrix, we want the coefficient 
portion of the matrix to be the identity matrix, or at least triangular.  Which one depends on 
how hard we want to work. 
 

2 1 1

2 1 2

3 1 3

3 2

2

2 3 3

3 6 3 1 1 6

4 8 4 1 1 8

2 3 10 2 3 1 10

1 2 2 2

4 1 1 8

2 3 1 10

1 2 2 2
4

0 7 7 0
2

0 1 3 14

1 2 2 2

0 1 3 141

0 1 1 07

1 2 2

0 1 3

x y z

x y z

x y z

R R R

R R R

R R R

R R

R

R R R

− + = − 
  

+ − =  −  
  − − + = − −  

− 
 

− =  −
 
 − − 

− 
− =  

 −
 + =
 − 

− =
 

 −   
   −   

−

+ =  −

3

2

14

0 0 2 14

1 2 2 2
1

0 1 3 14
2

0 0 1 7

R

 
 
 
 − 

− 
   
−  −    

 − 

 

 
We’ve reached a triangular (coefficient) matrix.  This is sufficient to solve the system by 
hand by back solving.  The bottom row says that z= -7, the row above it y -3z=14, and we can 
find y by substitution: y=-7.  And solving for x from the top row x+2y-2z=2, we get x=2.  The 
form of this matrix is also called row echelon form.  This can be applied to matrices of any 
size where the diagonal is all ones, and the entries below the diagonal are all zeros, even if 
the matrix is not square. 
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If we don’t wish do back solve this way, we can continue until we’ve reached a matrix with 
an identity matrix in place of all the coefficients. This form is called row-reduced echelon 
form.  From this form, we can read the values of the variables directly off the matrix. 
 

1 0 0 2

0 1 0 7

0 0 1 7

 
 

−
 
 − 

 

 
Which we use depends on whether we think that back-solving is easier than row-reducing.  
But, if we are letting a computer do the work for us, the row-reduced form is better since 
the computer will be more reliable in its arithmetic than we will be (and faster). 

 
B. Solving using Inverses 

To solve a system using matrices, we use the analogy of a matrix equation AX=B.  If this was 
a simple linear equation, I’d divide the equation by the coefficient of the variable.  There are 
no rules for “dividing” matrices, but instead, we can multiply by the inverse (just as division 
is really multiplication by the reciprocal or the multiplicative inverse): X=A-1B. 
 
This is not an efficient process to do by hand (we have to row reduce to find the inverse 
matrix (except in the case of the 2x2 matrix for which we have a formula), and then we have 
to do multiplication by hand).  However, for a computer, this process is quite simple.  
 
This form of the solution is typically used in proving theorems about a system. 

 
 

C.  Solving by Cramer’s Rule 
Cramer’s Rule is a method that allows us to solve for one variable at a time.  The procedure 
involves the determinant of the coefficient matrix, and the determinant of a matrix where 
the column representing the variable we wish to solve for has been replace by the column 
of the solution matrix.  Let’s call this matrix Ki. 
 
Let’s solve for the y-variable in the matrix we solved by row reducing.  We need the 
determinant of A. 

 

3 1 1

det 4 1 1 14

2 3 1

−  
  − = −  
 − −   

 

 
We also need the determinant of K. 

3 6 1

det 4 8 1 98

2 10 1

  
  − =  
 −   
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This K is the A matrix but with the 2nd column (representing the y-variable) with the solution 

values.  Then we find that 
det( ) 98

7
det( ) 14

K
y

A
= = = −

−
.  Following this procedure, we can find  the 

values of the other variables as well, but to solve for x, the first column is replaced by the 
solution matrix, or to solve for z, the third column is so replaced. 
 

 
Problems. 

Consider the following matrices:  

 

1 3 4 0 3 5
3 1 9 3 2 2

, , , 2 1 0 , 1 4 0
1 4 1 0 4 4

3 4 1 1 2 7

6 7
1 3 2 0 4

, 11 5 , 1 0 2 ,
2 4 1 5 1

2 3

A B C D E

F G H J

−   
−         = = = = − = −         − −     

− − −      

− 
−    = = − = − =    − −   

  

 

i. Add: A+B, B+C, A+C, D+E 
ii. Multiply: 4A, -3B, -1D, 2F, 21G, -5H 

iii. Multiply: AB, AC, DE, BF, GC, DG, EH, BJ. If the multiplication is not possible, explain why not. 
iv. Transpose: Find the transpose of A, D, F, G, J 
v. Find the inverse of A, B, C, D, E. 

vi. Calculate the determinants of A, B, C, D, E. 
 
 
 

Consider the systems of equations: 

5 2 10 9
2 3 12 5 17

, , 3 2 4 16, 2 3 14
4 10 3 4 12

4 3 7 3 5 2 18

x y z x y z
x y x y

x y z x y z
x y x y

x y z x y z

− + = + + = 
+ = − + =   

+ − = − + − =   
− = − =   − − + = − − = − 

 

vii. Write each system of equations in augmented matrix form. 
viii. Write each system of equations as a matrix equation. 

ix. Solve each system of equations by row operations. 
x. Solve each system of equations by inverse matrix methods. (if possible) 

xi. Solve each system of equations by Cramer’s rule. (if possible) 
 
 


