
Betsy McCall 

 
1 

Characteristic Equations 
 
Solving differential equations typically involves finding techniques that will work in 
particular cases rather than a general procedure for all types of situations.  Some of these 
techniques have very limited applications.  One of the broadest applications of solution 
techniques involves finding a characteristic equation, created from assuming a solution to 
a problem, usually of the form of an exponential.  This technique applies readily to 
differential equations of all orders, assuming that the equation is of the right type.  An 
equation with constant coefficients is most typical for the exponential case, but we will 
explore other situations where a similar procedure can work when the equation does not 
have constant coefficients. 
 
Example 1.  For the differential equation 𝑦′′ + 3𝑦′ − 4𝑦 = 0, find the characteristic 
equation for the problem, and solve for y(t).  Assume the solution is of the form 𝑦(𝑡) =
𝐴𝑒𝑟𝑡. 
 
Assuming this solution form, take some derivatives and plug them into the differential 
equation. 
 

𝑦′(𝑡) = 𝐴𝑟𝑒𝑟𝑡, 𝑦′′(𝑡) = 𝐴𝑟2𝑒𝑟𝑡 
𝑦′′ + 3𝑦′ − 4𝑦 = 𝐴𝑟2𝑒𝑟𝑡 + 3𝐴𝑟𝑒𝑟𝑡 − 4𝐴𝑒𝑟𝑡 = 0 

 
Since 𝐴𝑒𝑟𝑡 is in every term, factor it out. 
 

𝐴𝑒𝑟𝑡(𝑟2 + 3𝑟 − 4) = 0 
 
If A=0, we have only the trivial solution (i.e. y(t)=0 everywhere), and 𝑒𝑟𝑡 is never zero.  
That leaves us with 𝑟2 + 3𝑟 − 4 = 0 as a means of obtaining the solution.  If the equation 
is factorable, factor it.  If not, you can use the quadratic formula to find real or complex 
roots.  This equation is called the characteristic equation. 
 
Here, we can factor 𝑟2 + 3𝑟 − 4 = (𝑟 + 4)(𝑟 − 1) = 0, and so our solution of the form 
𝑦(𝑡) = 𝐴𝑒𝑟𝑡, will work as long as r=-4, or r=1.  Thus our general solution for  𝑦(𝑡) =
𝐴𝑒−4𝑡 + 𝐵𝑒𝑡.  The coefficients can be determined by the initial conditions.  Sometimes 
this solution is notated as 𝑦𝑐(𝑡) since it’s the solution to the characteristic equation. 
 
Any time we have constant coefficients, we can use this method on homogeneous 
differential equations of any order, including first order, and higher order problems. 
 
Example 2. For the differential equation 𝑦′ + 𝑎𝑦 = 0, does the method used in Example 1 
work? 
 
It does work if a is a constant.  Assume the solution 𝑦(𝑡) = 𝐴𝑒𝑟𝑡 and plug it and its 
derivative 𝑦′(𝑡) = 𝐴𝑟𝑒𝑟𝑡 into the equation. 
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𝑦′ + 𝑎𝑦 = 𝐴𝑟𝑒𝑟𝑡 + 𝑎𝐴𝑒𝑟𝑡 = 0 
 
Factor out the common terms to get 𝐴𝑒𝑟𝑡(𝑟 + 𝑎) = 0.  The same conditions a before hold.  
A=0 leaves us only with y(t)=0, the trivial solution, and the exponential can never be zero, 
thus, r= -a is the only solution.  So, 𝑦(𝑡) = 𝐴𝑒−𝑎𝑡. 
 
Example 3.  For the differential equation 𝑦′′′ + 2𝑦′′ − 9𝑦′ − 18𝑦 = 0, find the 
characteristic equation for the problem, and solve for y(t).  Assume the solution is of the 
form 𝑦(𝑡) = 𝐴𝑒𝑟𝑡. 
 
For higher order problems like this, the great difficulty is in factoring the polynomial 
produced.  However, even if it’s not factorable, we have numerical methods (such as using 
our calculator or Newton’s method) for finding the zeros of such a function, unless we are 
lucky, and it factors more easily. 
 
Our derivatives are: 
 

𝑦′(𝑡) = 𝐴𝑟𝑒𝑟𝑡, 𝑦′(𝑡) = 𝐴𝑟𝑒𝑟𝑡, 𝑦′′(𝑡) = 𝐴𝑟2𝑒𝑟𝑡, 𝑦′′′(𝑡) = 𝐴𝑟3𝑒𝑟𝑡 
 
These give us the characteristic equation:  
 

𝑦′′′ + 2𝑦′′ − 9𝑦′ − 18𝑦 = 𝐴𝑟3𝑒𝑟𝑡 + 2𝐴𝑟2𝑒𝑟𝑡 − 9𝐴𝑟𝑒𝑟𝑡 − 18𝐴𝑟𝑒𝑟𝑡 = 0 
𝐴𝑒𝑟𝑡(𝑟3 + 2𝑟2 − 9𝑟 − 18) = 𝐴𝑒𝑟𝑡[𝑟2(𝑟 + 2) − 9(𝑟 + 2)] = 𝐴𝑒𝑟𝑡(𝑟2 − 9)(𝑟 + 2) = 

𝐴𝑒𝑟𝑡(𝑟 + 3)(𝑟 − 3)(𝑟 + 2) = 0 
 
Our equation here factored by grouping, giving us three real solutions.  So 𝑦(𝑡) = 𝐴𝑒−3𝑡 +
𝐵𝑒3𝑡 + 𝐶𝑒−2𝑡, which is just the sum of all the separate solutions. 
 
All of our examples so far have had distinct real roots.  Let’s look at a situation with 
repeated roots. 
 
Example 4.  Solve the differential equation 𝑦′′ + 4𝑦′ + 4𝑦 = 0 for the general solution. 
As we’ve seen happen in the past, we can transform this differential equation into a 
polynomial.  Each derivative gets a factor of r, and the original function, being just a 
multiple of the assumed solution, is treated like a constant.  It will save time to recognize 
this pattern and jump directly to the characteristic equation. 
 

𝑟2 + 4𝑟 + 4 = (𝑟 + 2)2 = 0 
 
This equation as a repeated root at r= -2.  For each order of a differential equation, we 
need that many distinct solutions, i.e. first order has one, second order two, third order 
three, etc.  But it appears at first that since our root is repeated we have only one.  The 
solution to this is to use the value of r as one solution: 𝑦1(𝑡) = 𝑒−2𝑡, and to create the 
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other solution by multiplying this solution by t: 𝑦2(𝑡) = 𝑡𝑒−2𝑡.  This will create a second 
fundamental solution.  We can check this in the Wronskian. 
 

𝑊 = | 𝑒−2𝑡 𝑡𝑒−2𝑡

−2𝑒−2𝑡 𝑒−2𝑡 − 2𝑡𝑒−2𝑡
| = 𝑒−4𝑡 − 2𝑡𝑒−4𝑡 + 2𝑡𝑒−4𝑡 = 𝑒−4𝑡 

 
This exponential is never equal to zero, so it does form a fundamental set.  Thus, our 
general solution is 𝑦(𝑡) = 𝐴𝑒−2𝑡 + 𝐵𝑡𝑒−2𝑡 = (𝐴 + 𝐵𝑡)𝑒−2𝑡. 
 
We may also have to deal with situations involving complex roots of the form 𝑟 = 𝜆 ± 𝜇𝑖.  
I’ll do two examples below, one involving a purely imaginary root (λ=0), and one with 
λ≠0. 
 
Example 5.  Solve the differential equation 𝑦′′ + 4𝑦 = 0 for the general solution. 
Here, our characteristic equation is 𝑟2 + 4 = 0, which has solutions of 𝑟2 = −4 → 𝑟 =
±2𝑖. 
 
Our equations are describing behaviour in the real world, so rather than using complex 

exponentials of the form 𝑦(𝑡) = 𝐴𝑒−2𝑖𝑡 + 𝐵𝑒2𝑖𝑡, we will use Euler’s formula to convert 
these into sines and cosines. 
 

Given that 𝑒𝑖𝑥 = cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥), we can solve for sine and cosine using complex 

exponentials as: 

 

sin(𝑡) =
𝑒𝑖𝑡 − 𝑒−𝑖𝑡

2𝑖
 

cos(𝑡) =
𝑒𝑖𝑡 + 𝑒−𝑖𝑡

2
 

 
Given this relationship, we can represent our real solutions as 𝑦(𝑡) = 𝐴𝑐𝑜𝑠(2𝑡) +

𝐵𝑠𝑖𝑛(2𝑡).  For any characteristic equation with a solution of the form 𝑒±𝜇𝑖𝑡 we will end up 
with an equivalent sent of fundamental solutions as cos(𝜇𝑡) + sin⁡(𝜇𝑡).  By choosing 
coefficients correctly (possibly complex coefficients), we can always make this conversion. 
 
We can also check the Wronskian to ensure these these do form a fundamental set of 
solutions: 
 

𝑊 = |
𝑐𝑜𝑠2𝑡 𝑠𝑖𝑛2𝑡

−2𝑠𝑖𝑛2𝑡 2𝑐𝑜𝑠2𝑡
| = 2𝑐𝑜𝑠22𝑡 + 2𝑠𝑖𝑛22𝑡 = 2 ≠ 0 

 
Example 6.  Solve the differential equation 𝑦′′ + 2𝑦′ + 11𝑦 = 0 for the general solution. 
In the more general case, we will have to use the quadratic formula to obtain solutions to 
the characteristic equation, here 𝑟2 + 2𝑟 + 11 = 0, and often, especially in application 
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problems, the results will not be pretty whole numbers.  They will be ugly fractions with 
square roots, as they will be here. 
 

𝑟 =
−2 ± √22 − 4(1)(11)

2(1)
=
−2 ± √−40

2
=
−2 ± 2√10𝑖

2
= −1 ± √10𝑖 

 
The arithmetic for the breakdown is as follows: 

𝑒(−1+√10𝑖)𝑡 + 𝑒−1−√10𝑖 = 𝑒−1𝑡𝑒√10𝑖𝑡 + 𝑒−1𝑡𝑒−√10𝑖𝑡 = 𝑒−𝑡(𝑒√10𝑖𝑡 + 𝑒−√10𝑖𝑡) 
 
The bit in the parentheses is what is converted to sine and cosine using Euler’s formula. 
 

𝑒−𝑡(𝑒√10𝑖𝑡 + 𝑒−√10𝑖𝑡) = 𝑒−𝑡(𝑐𝑜𝑠√10𝑡 + 𝑠𝑖𝑛√10𝑡) 
 
Notice that the real part stays in the exponential, and the imaginary part (without the i) 
goes into the trig functions.  The general form of the solution then, for a complex 

exponential is for 𝑟 = 𝜆 ± 𝜇𝑖: 𝑦𝑐(𝑡) = 𝑒𝜆𝑡(𝐴𝑐𝑜𝑠(𝜇𝑡) + 𝐵𝑠𝑖𝑛(𝜇𝑡)) = 𝐴𝑒𝜆𝑡 cos(𝜇𝑡) +

𝐵𝑒𝜆𝑡sin⁡(𝜇𝑡). 
 
 
Practice Problems. 
Find the characteristic equation for each differential equation and find the general 
solution.  Some of the higher-order problems may be difficult to factor.  If you can find 
one or more real root from your calculator (or from factoring), you can reduce the 
problem by long division to get any remaining complex roots from the quadratic formula.  
For all these problems, assume a solution of 𝑦(𝑡) = 𝑒𝑟𝑡.  The Roman numeral indicate 
higher order derivatives above three, i.e. IV is the fourth derivative. 

1. 𝑦′ + 2𝑦 = 0 
2. 2𝑦′ − 3𝑦 = 0 
3. 𝑦′′ − 7𝑦′ + 12𝑦 = 0 
4. 𝑦′′ + 3𝑦′ + 2𝑦 = 0 
5. 𝑦′′ − 2𝑦′ − 25𝑦 = 0 
6. 𝑦′′ + 2𝑦 − 7𝑦 = 0 
7. 𝑦′′ + 𝑦 = 0 
8. 4𝑦′′ − 9𝑦 = 0 
9. 𝑦′′ − 8𝑦′ + 16𝑦 = 0 
10. 𝑦′′ + 2𝑦′ + 10𝑦 = 0 
11. 𝑦′′ − 5𝑦′ + 25𝑦 = 0 
12. 5𝑦′′ + 6𝑦′ + 8𝑦 = 0 
13. 25𝑦′′ + 70𝑦′ + 49𝑦 = 0 
14. 𝑦′′′ + 𝑦′ = 0 
15. 𝑦′′′ + 2𝑦′′ − 𝑦′ − 2𝑦 = 0 
16. 𝑦𝐼𝑉 + 𝑦′′ = 0 
17. 𝑦𝐼𝑉 + 2𝑦′′′ + 𝑦′′ = 0 
18. 𝑦𝐼𝑉 + 𝑦′′′ − 7𝑦′′ − 𝑦′ + 6𝑦 = 0 
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19. 𝑦′′′ − 𝑦 = 0 
20. 𝑦𝑉𝐼 − 𝑦′′ = 0 
21. 𝑦𝑉𝐼𝐼𝐼 + 8𝑦𝐼𝑉 + 16𝑦 = 0 

 
 
 
Characteristic equations can also result from polynomial solutions, and polynomial 
coefficients of differential equations.  This general method is called Cauchy-Euler 
equations.  For instance, since we know that when we take derivatives, each polynomial 
loses powers by 1 for each derivative.  Thus if we multiply each successive derivative by 
power of t, increasing with each order of derivative, then we can get an equation we can 
solve by assuming a solution of 𝑦(𝑡) = 𝑡𝑛.  For instance, we’re talking about equations 
like: 
 

𝑎𝑡𝑦′ + 𝑏𝑦 = 0 
𝑎𝑡2𝑦′′ + 𝑏𝑡𝑦′ + 𝑐𝑦 = 0 

𝑎𝑡3𝑦′′′ + 𝑏𝑡2𝑦′′ + 𝑐𝑡𝑦′ + 𝑑𝑦 = 0 
  
And so forth. 
 
Example 7. Solve the differential equation 2𝑡2𝑦′′ + 3𝑡𝑦′ − 𝑦 = 0 by assuming the 
solution 𝑦(𝑡) = 𝑡𝑛.  
 
As with the exponential solution, start by taking derivatives and plugging them into the 
equation: 𝑦′(𝑡) = 𝑛𝑡𝑛−1, 𝑦′′(𝑡) = 𝑛(𝑛 − 1)𝑡𝑛−2. 
 

2𝑡2𝑦′′ + 3𝑡𝑦′ − 𝑦 = 2𝑡2𝑛(𝑛 − 1)𝑡𝑛−2 + 3𝑡𝑛𝑡𝑛−1 − 𝑡𝑛 = 0 
 
Combining the powers of t, this reduces to 2𝑛(𝑛 − 1)𝑡𝑛 + 3𝑛𝑡𝑛 − 𝑡𝑛 = 0, and then factor 
out the common 𝑡𝑛: 𝑡𝑛(2𝑛(𝑛 − 1) + 3𝑛 − 1) = 0, which further simplifies to 2𝑛2 − 2𝑛 +
3𝑛 − 1 = 2𝑛2 − 𝑛 − 1 = 0.  This is the characteristic polynomial of this equation, and we 
can use it to solve for the powers of n that will satisfy the equation. 
 

2𝑛2 − 𝑛 − 1 = (2𝑛 + 1)(𝑛 − 1) = 0 
 

Thus, n=1, and n= -1/2.  So our solution is 𝑦(𝑡) = 𝐴𝑡 + 𝐵𝑡−
1

2 = 𝐴𝑡 +
𝐵

√𝑡
. 

 
Obtaining complex solutions from these equations are harder to deal with.  Repeated 
roots should be dealt with by using reduction of order on one solution obtained in this 
way. 
 
Practice Problems. 
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For each of the problems below, find the general solution to the differential equation.  
Assume a solution of 𝑦(𝑡) = 𝑡𝑛. 

1. 𝑡2𝑦′′ + 5𝑡𝑦′ + 4𝑦 = 0 
2. 𝑡2𝑦′′ + 4𝑡𝑦′ + 2𝑦 = 0 
3. 𝑡2𝑦′′ − 4𝑡𝑦′ + 4𝑦 = 0 
4. 𝑡2𝑦′′ − 4𝑡𝑦′ + 6𝑦 = 0 
5. 𝑡2𝑦′′ + 3𝑡𝑦′ + 𝑦 = 0 

 
Other assumed solutions (also called an Ansatz (“guess”) solution) can work when 
predictable patterns are available.  The two types provided here are the most common.  
Figuring out what those patterns imply about the form of the solution is an art best 
developed through experience. 
 
 
  
 
  


