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Hyperbolic Trig Functions 
 
Hyperbolic trig functions take their name from the many properties they share with 

regular (circular) trig functions.  The two primary functions hyperbolic sine (sinh) 

and hyperbolic cosine (cosh) are defined as follows: 

 

sinh(𝑡) =
𝑒𝑡 − 𝑒−𝑡

2
 

cosh(𝑡) =
𝑒𝑡 + 𝑒−𝑡

2
 

 

Compare these definition with the identities for sine and cosine derived from 

Euler’s formula: 𝑒𝑖𝑥 = cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥). 
 

sin(𝑡) =
𝑒𝑖𝑡 − 𝑒−𝑖𝑡

2𝑖
 

cos(𝑡) =
𝑒𝑖𝑡 + 𝑒−𝑖𝑡

2
 

 

Because of their similarities, hyperbolic trig functions have many similar properties 

to the regular trig functions.  For instance, sine and hyperbolic sine are both odd 

functions, with sin(0)=0 and sinh(0)=0.  Likewise, cosine and hyperbolic cosine are 

both even functions, with cos(0)=1 and cosh(0)=1. 

 

We can see these properties most easily from the symmetry of their graphs. 

 

Sine:      Hyperbolic Sine:  

 

 

 

 

 

 

Cosine:  Hyperbolic Cosine:    

 

 

 

 

 

 

While they do share the same symmetry, hyperbolic trig functions are not periodic.  

They are defined for all values of x. 
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The other four hyperbolic trig functions are defined the same way as the other four 

regular trig functions are in terms of sine and cosine. 

 

tan(𝑥) =
sin⁡(𝑥)

cos⁡(𝑥)
 tanh(𝑥) =

sinh⁡(𝑥)

cos⁡h(𝑥)
=
𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡
 

cot(𝑥) =
cos⁡(𝑥)

sin⁡(𝑥)
 coth(𝑥) =

cos⁡h(𝑥)

sinh⁡(𝑥)
=
𝑒𝑡 + 𝑒−𝑡

𝑒𝑡 − 𝑒−𝑡
 

sec(𝑥) =
1

cos⁡(𝑥)
 sech(𝑥) =

1

cos⁡h(𝑥)
=

2

𝑒𝑡 + 𝑒−𝑡
 

csc(𝑥) =
1

sin⁡(𝑥)
 csch(𝑥) =

1

sin⁡h(𝑥)
=

2

𝑒𝑡 − 𝑒−𝑡
 

 

It takes a long time to say “hyperbolic sine” and “hyperbolic cosine”, and so forth all 

the time.  So mathematicians have shorthands for all these terms based on their 

abbreviations.  Hyperbolic sine is called “sinch”, hyperbolic cosine “kosh”, hyperbolic 

tangent “tanch”, hyperbolic cotangent “cotanch”, hyperbolic secant “seech”, and 

hyperbolic cosecant “coseech”. 

 

Let’s compare the graphs of each of these functions. 

 

Tangent:  Hyperbolic Tangent:    

 

 

 

 

 

 

 

Cotangent: Hyperbolic Cotangent:  

 

 

 

 

 

 

 

Secant:     Hyperbolic Secant:  
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Cosecant:    Hyperbolic Cosecant: 

 

 

 

 

  

 

All the hyperbolic trig graphs maintain the same symmetry as their regular trig 

counterparts, and we can find their values at 0 (if they are defined there) by using 

what we know about the hyperbolic sine and hyperbolic cosine graphs at zero. 

 

More similarities with regular trig functions abound, including in some of their 

identity relationships (differing from regular trig identities by the occasional minus 

sign), and in their derivatives (also occasionally differing by negative signs). 

 

Table of identities: 

𝑐𝑜𝑠2(𝑥) + 𝑠𝑖𝑛2(𝑥) = 1 𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) = 1 

1 + 𝑡𝑎𝑛2(𝑥) = 𝑠𝑒𝑐2(𝑥) 1 = 𝑡𝑎𝑛ℎ2(𝑥) + 𝑠𝑒𝑐ℎ2(𝑥 

1 + 𝑐𝑜𝑡2(𝑥) = 𝑐𝑠𝑐2(𝑥) 1 = 𝑐𝑜𝑡ℎ2(𝑥) − 𝑐𝑠𝑐ℎ2(𝑥) 

𝑠𝑖𝑛2(𝑥) =
1

2
[1 − cos(2𝑥)] 𝑠𝑖𝑛ℎ2(𝑥) = −

1

2
[1 − cos ℎ(2𝑥)] 

𝑐𝑜𝑠2(𝑥) =
1

2
[1 + cos(2𝑥)] 𝑐𝑜𝑠ℎ2(𝑥) =

1

2
[1 + cos ℎ(2𝑥)] 

sin(2𝑥) = 2 sin(𝑥) cos⁡(𝑥) sin ℎ(2𝑥) = 2 sin ℎ(𝑥) cosh⁡(𝑥) 
cos(2𝑥) = 𝑐𝑜𝑠2(𝑥) − 𝑠𝑖𝑛2(𝑥) cosh(2𝑥) = 𝑐𝑜𝑠ℎ2(𝑥) + 𝑠𝑖𝑛ℎ2(𝑥) 

sin(𝑥 ± 𝑦) = sin(𝑥) cos⁡(𝑦) ± cos(𝑥) sin⁡(𝑦) sin ℎ(𝑥 ± 𝑦) = sin ℎ(𝑥) cos⁡h(𝑦) ± cos ℎ(𝑥) sinh⁡(𝑦) 
cos(𝑥 ± 𝑦) = cos(𝑥) cos⁡(𝑦) ∓ sin(𝑥) sin⁡(𝑦) cosh(𝑥 ± 𝑦) = cos ℎ(𝑥) cos⁡h(𝑦) ± sinh(𝑥) sinh⁡(𝑦) 
 

Table of derivatives: 
𝑑

𝑑𝑥
[sin⁡(𝑥)] = cos⁡(𝑥) 

𝑑

𝑑𝑥
[sinh⁡(𝑥)] = cosh⁡(𝑥) 

𝑑

𝑑𝑥
[cos⁡(𝑥)] = −sin(𝑥) 

𝑑

𝑑𝑥
[cosh⁡(𝑥)] = sinh(𝑥) 

𝑑

𝑑𝑥
[tan⁡(𝑥)] = 𝑠𝑒𝑐2(𝑥) 

𝑑

𝑑𝑥
[tanh⁡(𝑥)] = 𝑠𝑒𝑐ℎ2(𝑥) 

𝑑

𝑑𝑥
[cot(𝑥)] = −𝑐𝑠𝑐2(𝑥) 

𝑑

𝑑𝑥
[coth(𝑥)] = −𝑐𝑠𝑐ℎ2(𝑥) 

𝑑

𝑑𝑥
[sec⁡(𝑥)] = sec⁡(𝑥)tan⁡(𝑥) 

𝑑

𝑑𝑥
[sech⁡(𝑥)] = −sec⁡h(𝑥)tanh⁡(𝑥) 

𝑑

𝑑𝑥
[csc⁡(𝑥)] = −csc⁡(𝑥)cot⁡(𝑥) 

𝑑

𝑑𝑥
[csch(𝑥)] = −csc⁡h(𝑥)coth⁡(𝑥) 

 

Hyperbolic trig functions are most common used in differential equations as an 

alternate means of dealing with exponential functions, in part because of their 

symmetry properties (which exponentials lack) and because of their similarities to 
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the standard trig functions.  They also have Taylor series similar to those of the 

regular trig functions and so appear frequently in series solutions. 

 

Taylor series identities: 

sin(𝑥) = ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 sin ℎ(𝑥) = ∑
𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 

cos(𝑥) = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

 cos ℎ(𝑥) = ∑
𝑥2𝑛

(2𝑛)!

∞

𝑛=0

 

 

 

Example 1. Prove that the derivative of sinh(x) is cosh(x) using the definition of the 

hyperbolic trig functions. 

 
𝑑

𝑑𝑥
[sinh(𝑥)] =

𝑑

𝑑𝑥
[
𝑒𝑥 − 𝑒−𝑥

2
] =

1

2

𝑑

𝑑𝑥
[𝑒𝑥 − 𝑒−𝑥] =

1

2
[𝑒𝑥 + 𝑒−𝑥] = cosh⁡(𝑥) 

 

 

Example 2.  Use the Taylor series of 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0  to prove that the Taylor series of 

sinh(x)=⁡∑
𝑥2𝑛+1

(2𝑛+1)!
∞
𝑛=0  when the series is centered at 0. 

 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+
𝑥5

5!
+
𝑥6

6!
+
𝑥7

7!
+ ⋯ 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−
𝑥3

3!
+
𝑥4

4!
−
𝑥5

5!
+
𝑥6

6!
−
𝑥7

7!
+ ⋯ 

Subtract these expressions: 

 

𝑒𝑥 − 𝑒−𝑥 = 2𝑥 + 2
𝑥3

3!
+ 2

𝑥5

5!
+ 2

𝑥7

7!
+ ⋯ 

𝑒𝑥 − 𝑒−𝑥

2
= 𝑥 +

𝑥3

3!
+
𝑥5

5!
+
𝑥7

7!
+ ⋯ 

 

And then re-index for odd numbers only:  

sin ℎ(𝑥) = ∑
𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 

 

 

Example 3.  Show that for the differential equation 𝑦′′ − 𝑦 = 0, the set of solutions 

𝑦1 = 𝑒𝑡, 𝑦2 = 𝑒−𝑡 and 𝑦1 = cosh(t) , 𝑦2 = sinh⁡(𝑡) both satisfy the differential equation, 

and both form a fundamental set of solutions. 

 

For set #1: 𝑦′1 = 𝑒𝑡, 𝑦′2 = −𝑒−𝑡 and 𝑦′′1 = 𝑒𝑡, 𝑦′′2 = 𝑒−𝑡 
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𝐴𝑒𝑡 + 𝐵𝑒−𝑡 − (𝐴𝑒𝑡 + 𝐵𝑒−𝑡) = 0 

 

𝑊 = |𝑒
𝑡 𝑒−𝑡

𝑒𝑡 −𝑒−𝑡
| = −1 − 1 = −2 ≠ 0 

 

For set #2: 𝑦′1 = sinh(t) , 𝑦′2 = cosh⁡(𝑡) and 𝑦′′1 = cosh(t) , 𝑦′′2 = sinh⁡(𝑡) 
 

𝐴𝑐𝑜𝑠ℎ(𝑡) + 𝐵𝑠𝑖𝑛ℎ(𝑡) − (𝐴𝑐𝑜𝑠ℎ(𝑡) + 𝐵𝑠𝑖𝑛ℎ(𝑡)) = 0 

 

𝑊 = |
cosh⁡(𝑡) sinh⁡(𝑡)
sinh⁡(𝑡) cosh⁡(𝑡)

| = 𝑐𝑜𝑠ℎ2(𝑡) − 𝑠𝑖𝑛ℎ2(𝑡) = 1 ≠ 0 

 

Practice Problems: 

1. Prove that 
𝑑

𝑑𝑥
[tanh⁡(𝑥)] = 𝑠𝑒𝑐ℎ2(𝑥) using the definitions of hyperbolic tangent 

and hyperbolic secant.  Do it with the exponential definitions, and with the 

sinh(x) and cosh(x) definitions. 

2. Use the exponential definitions of sinh(x) and cosh(x) to prove the identity 

𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) = 1. 

3. Use the Taylor series of the exponential function provided in example 2 to 

show that the Taylor series for cosh(x) can be derived as I did for sinh(x). 

4. Give integration formulas for sinh(x), cosh(x), tanh(x) and coth(x).  For the 

latter two, use substation and the integrals for sinh(x) and cosh(x).  Can you 

find a similar formula for sech(x) and csch(x)?  [Hint: use the formulas for the 

regular trig functions and work backwards.  Replace the regular trig 

functions with their hyperbolic counterparts and take the derivative.  Do you 

need to change signs anywhere?] 

5. Solve the following differential equations using both exponentials and 

hyperbolic trig functions and show that both forms of the solution are 

fundamental sets. 

a. 𝑦′′ − 4𝑦 = 0 

b. 𝑦′′ − 9𝑦 = 0 

6. Use the Taylor series formulas for sinh(x) and cosh(x) to prove the derivative 

formulas for sinh(x) and cosh(x). 

 

 

Final Note: These functions are available in your calculator.  In the TI-84, you can 

find them in the Catalog .  Then scroll through the list to find them. 

 
 


