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Series Solutions 
 
 
When using analytic functions, we are constrained by the common types of functions we can assume at 
the start.  A more general way to express functions is the power series.  Since power series can be used 
to represent both common and uncommon functions, this gives us greater ability to find a solution to 
equations that don’t fit any of the standard patterns we know how to solve.  In addition, they give us 
another way to prove that the standard functions we’ve chosen for the common patterns does indeed 
work.  Here, we’ll consider power series solutions to simple functions (for instance, second order 
constant coefficient problems) that we can then check by another means.  We’ll also consider more 
general situations expanded around ordinary points and regular singular points.  We’ll mostly consider 
expanding around zero (0) since this tends to make the math easier, but we’ll look at one example 
where we expand around another point to look at how this changes the math.  We will only consider 
homogeneous cases. 
 

An ordinary point is a point in standard form 𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦
(𝑛−1) +⋯+ 𝑎1(𝑥)𝑦

′ + 𝑎0(𝑥)𝑦 = 0 
where all the 𝑎𝑖(𝑥) are defined. 
 
A regular singular point 𝑥0, which will only come into play later on, is a point where at least one of the 

𝑎𝑖(𝑥)  is undefined, but if we multiply by (𝑥 − 𝑥0)
𝑘 for each 𝑖 = 𝑛 − 𝑘, that these points of 

discontinuity disappear.  In other words, multiply the first term 𝑎𝑛−1(𝑥) by (𝑥 − 𝑥0), and 𝑎𝑛−2(𝑥) by 
(𝑥 − 𝑥0)

2, and so on. 
 
If a point to expand the problem around is not given, I will tend to choose zero (0) for the slightly easier 
math, or the initial condition (with priority given to the initial condition). 
 
In all of these ordinary point cases we will assume the solution 𝑦 = ∑ 𝑐𝑛(𝑥 − 𝑥0)

𝑛∞
𝑛=0 , where 𝑐𝑛 is the 

coefficient that goes with the nth power of x.  We’ll take this information and plug it into the differential 
equation to solve for a condition on how the coefficients relate to each other. 
 
To plug this proposed solution into the equation we’ll need to take derivatives.  Each time we take a 
derivative, the constant disappears.  In the original solution, this corresponds to n=0, so the index 
changes to start at n=1.  Same for the next derivative. 
 

𝑦 = ∑ 𝑐𝑛(𝑥 − 𝑥0)
𝑛

∞

𝑛=0

 

𝑦′ = ∑ 𝑐𝑛𝑛(𝑥 − 𝑥0)
𝑛−1

∞

𝑛=1

 

𝑦′′ = ∑ 𝑐𝑛𝑛(𝑛 − 1)(𝑥 − 𝑥0)
𝑛−2

∞

𝑛=2

 

𝑦′′′ = ∑ 𝑐𝑛𝑛(𝑛 − 1)(𝑛 − 2)(𝑥 − 𝑥0)
𝑛−3

∞

𝑛=3

 

 
And so forth. 
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A second skill we’ll need is resetting the index to n=0.  In order to combine the summations into a single 
sum, we’ll need make them similar.  One way to do that is make all the powers of n the same.  Consider 
the first derivative, we want to make (𝑥 − 𝑥0)

𝑛−1 and change that to (𝑥 − 𝑥0)
𝑛.  In the summation, 

we’ll replace all the n’s with n+1.  The index of summation will then start at n=0.  Consider that the first 
term in the original sequence, when n=1 has a power of 0, since 1-1=0.  In the new sequence, where the 
power is n instead of n-1, we still want to get started at 0. 
 
Thus: 

𝑦′ = ∑𝑐𝑛𝑛(𝑥 − 𝑥0)
𝑛−1

∞

𝑛=1

= ∑𝑐𝑛+1(𝑛 + 1)(𝑥 − 𝑥0)
𝑛

∞

𝑛=0

 

 
Alternatively: 
 

𝑦′′ = ∑𝑐𝑛𝑛(𝑛 − 1)(𝑥 − 𝑥0)
𝑛−2

∞

𝑛=2

= ∑𝑐𝑛+2(𝑛 + 2)(𝑛 + 1)(𝑥 − 𝑥0)
𝑛

∞

𝑛=0

 

 
 
Now, in some of our problems, we’ll end up multiplying by powers of x that will change this slightly, but 
the principle is the same: if you bring up the index inside the sum, then the starting value has to come 
down by just as much.  
 
The third thing we’ll need to be able to do is to pull off initial values of a sum, when we are trying to 
match the starting index value of all the summations in the equation without changing the powers.  We 
do this by remembering that 
 

∑𝑐𝑛(𝑥 − 𝑥0)
𝑛

∞

𝑛=0

= 𝑐0(𝑥 − 𝑥0)
0 + 𝑐1(𝑥 − 𝑥0)

1 + 𝑐2(𝑥 − 𝑥0)
2 +⋯ 

 
We can rewrite the sum starting at any index by breaking this into the terms before the starting index, 
and the rest of the sum. 
 

∑𝑐𝑛(𝑥 − 𝑥0)
𝑛

∞

𝑛=0

= 𝑐0(𝑥 − 𝑥0)
0 +∑𝑐𝑛(𝑥 − 𝑥0)

𝑛

∞

𝑛=1

= 𝑐0(𝑥 − 𝑥0)
0 + 𝑐1(𝑥 − 𝑥0)

0 + ∑𝑐𝑛(𝑥 − 𝑥0)
𝑛

∞

𝑛=2

 

 
And so forth.  Typically, we’ll only have to peel off one or two terms. 
 
Let’s look at some problems. 
 

Example 1.  Use a geometric series to solve the differential equation 4 0y y    around the point 𝑥0 =

0. 
 
Assume 𝑦 = ∑ 𝑐𝑛𝑥

𝑛∞
𝑛=0 .  Then 𝑦′′ = ∑ 𝑐𝑛𝑛(𝑛 − 1)𝑥𝑛−2∞

𝑛=2 .  This makes the equation: 
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4∑𝑐𝑛𝑛(𝑛 − 1)𝑥𝑛−2
∞

𝑛=2

− ∑𝑐𝑛𝑥
𝑛

∞

𝑛=0

= 0 

 
Step 1: Bring all the coefficients inside the summations. 
 

∑4𝑐𝑛𝑛(𝑛 − 1)𝑥𝑛−2
∞

𝑛=2

− ∑𝑐𝑛𝑥
𝑛

∞

𝑛=0

= 0 

 
Step 2: Make all your exponents the same.  Usually this means 𝑥𝑛.  The second summation is already 
there, but we need to adjust the index of the first sum to make this happen. 
 
 

∑4𝑐𝑛+2(𝑛 + 2)(𝑛 + 1)𝑥𝑛
∞

𝑛=0

− ∑𝑐𝑛𝑥
𝑛

∞

𝑛=0

= 0 

 
Step 3: If the indices of each sum are not already the same, we’d need to make them the same.  In this 
example, since we didn’t have polynomial coefficients, just constants, adjusting the powers took care of 
this, too. 
 
Step 4: Combine the sums and collect the coefficients. 
 
 

∑𝑥𝑛[4𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) − 𝑐𝑛]

∞

𝑛=0

= 0 

 
Step 5: Set all coefficients (of each degree term and the coefficient in the sum) equal to zero, since we 
need the solution to equation zero for all the possible values of x. 
 
 

4𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) − 𝑐𝑛 = 0 
 
We can solve for the higher index coefficient in terms of the lower indexed one. 
 

𝑐𝑛+2 =
𝑐𝑛

4(𝑛 + 2)(𝑛 + 1)
 

 
This relationship means that we’re going to get two solutions, one depending on n even, and one 
depending on n odd. 
 
Step 6: Calculation the first several coefficients to see if you can establish a pattern. 
 
Starting with n=0 and n=1, build a table of coefficients 
 

n=0 𝑐2 =
𝑐0

4(2)(1)
 n=1 𝑐3 =

𝑐1
4(3)(2)
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n=2 𝑐4 =
𝑐2

4(4)(3)

=
𝑐0

42(4)(3)(2)(1)

=
𝑐0
424!

 

n=3 𝑐5 =
𝑐3

4(5)(4)

=
𝑐1

42(5)(4)(3)(2)

=
𝑐1
425!

 

n=4 𝑐6 =
𝑐4

4(6)(5)

=
𝑐0

43(6)(5)4!
=

𝑐0
436!

 

n=5 𝑐7 =
𝑐5

4(7)(6)
=

𝑐1
437!

 

n=6 𝑐8 =
𝑐6

4(8)(7)
=

𝑐0
448!

 n=7 𝑐9 =
𝑐7

4(9)(8)
=

𝑐1
449!

 

n=8 𝑐10 =
𝑐8

4(10)(9)

=
𝑐0

4510!
 

n=9 𝑐11 =
𝑐9

4(11)(10)

=
𝑐1
449!

 

 
Look at the second column.  We have powers of 4, or powers of 22.  We have twice those powers 
factorial.  And each even coefficient depends on 𝑐0.  In the last column we have a similar situation.  
Powers of 4, and odd factorials, and all the coefficients depend on 𝑐1.   We can represent even numbers 
by 2k, and odd numbers by 2k+1, where k here starts at 0 and goes up one for each row. 
 
Our two solutions in geometric series form are: 
 

𝑦1 = 𝑐0 [1 +
1

4 ∙ 2!
𝑥2 +

1

424!
𝑥4 +

1

436!
𝑥6 +

1

448!
𝑥8 +

1

4510!
𝑥10 +⋯] = 𝑐0 ∑

1

(2𝑛)!
(
1

2
𝑥)

2𝑛∞

𝑛=0

 

 
 

𝑦2 = 𝑐1 [𝑥 +
1

4 ∙ 3!
𝑥3 +

1

425!
𝑥5 +

1

437!
𝑥7 +

1

449!
𝑥9 +

1

4511!
𝑥11 +⋯] = 2𝑐1 ∑

1

(2𝑛 + 1)!
(
1

2
𝑥)

2𝑛+1∞

𝑛=0

 

 
 
(The extra 2 in the second equation is because I pulled the ½ inside the power; it’s to cancel out the 
extra +1 in the exponent.) 
 
If you consider the Taylor series formulas for some of our common functions, these geometric formulas 

are equivalent to 𝑦1 = 𝑐0cos⁡(
1

2
𝑥) and 𝑦2 = 2𝑐1sin⁡(

1

2
𝑥). 

 
If we solve the equation by other means, these are the answers we’d have ended up with. 
 
So now, let’s consider a slightly trickier problem: one that doesn’t have an obvious closed form. 
 
Example 2.  Solve the differential equation 𝑥𝑦′′ + 𝑦′ + 𝑥𝑦 = 0 using a series solution centered at x=0.  
[Note: Technically, we shouldn’t solve this problem at zero because it’s a singular point, not an ordinary 
point.  When we put this equation in standard form, we get the equation is not defined at x=0.  Still, this 
is a good example of the procedure used for the problem, and we’ll see what happens at the end.  We’ll 
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solve it again correctly using Frobenius’ Theorem in a later example.  Solving this equation at a non-
singular point is also a practice problem.] 
 
Now we have some x’s involved so we are unlikely to get a nice closed form solution as we had before.  
Also, we will have to use all of our tricks to combine our sums. 
 
Start with the usual 𝑦 = ∑ 𝑐𝑛𝑥

𝑛∞
𝑛=0  and its derivatives and plug them into our differential equation. 

 

𝑥∑𝑐𝑛𝑛(𝑛 − 1)𝑥𝑛−2
∞

𝑛=2

+ ∑𝑐𝑛𝑛𝑥
𝑛−1

∞

𝑛=1

+ 𝑥∑ 𝑐𝑛𝑥
𝑛

∞

𝑛=0

= 0 

 
Step 1: Bring any coefficients inside the summations.  Here, this means the x’s. 
 

∑𝑐𝑛𝑛(𝑛 − 1)𝑥𝑛−1
∞

𝑛=2

+ ∑𝑐𝑛𝑛𝑥
𝑛−1

∞

𝑛=1

+ ∑𝑐𝑛𝑥
𝑛+1

∞

𝑛=0

= 0 

 
Step 2: Make all the exponents of x the same.  Sometimes we might have to have starting indices 
starting below zero, but that’s okay for now.  These will get fixed in a later step, and we’ll still produce a 
recursive algorithm.  You can choose to make them all 𝑥𝑛 or 𝑥𝑛+1.  I’m going to go ahead and work with 
the former.  In the first two sums I’m replacing n with n+1 to bring the index down and keep the power 
the same.  In the last one, I’m replacing n with n-1 and increasing the index.  Be sure to make these 
replacements everyone including the subscripts. 
 

∑𝑐𝑛+1𝑛(𝑛 + 1)𝑥𝑛
∞

𝑛=1

+ ∑𝑐𝑛+1(𝑛 + 1)𝑥𝑛
∞

𝑛=0

+∑𝑐𝑛−1𝑥
𝑛

∞

𝑛=1

= 0 

 
I brought the first two sums down by one to increase the exponent, and the last index up by one to 
decrease the power. 
 
Step 3: We need to make all the starting indices the same.  We’ll do this here by finding the highest 
starting index value and hold those fixed.  Any sums that start at a small index, we will peel off an 
appropriate number of terms until we can start at the same place as the highest one.  In this case, two 
of our summations start at 1, and one starts at 0.  So the middle one needs to have the n=0 case 
removed.  The loose term is the case where I’ve set n=0. 
 

∑𝑐𝑛+1𝑛(𝑛 + 1)𝑥𝑛
∞

𝑛=1

+ 𝑐1(1)𝑥
0 + ∑𝑐𝑛+1(𝑛 + 1)𝑥𝑛

∞

𝑛=1

+ ∑𝑐𝑛−1𝑥
𝑛

∞

𝑛=1

= 0 

 
Step 4. Collect the summations together and factor out the common 𝑥𝑛 to get a single coefficient 
expression.  Collect any loose terms with the same power. 
 

∑𝑥𝑛[𝑐𝑛+1𝑛(𝑛 + 1) + 𝑐𝑛+1(𝑛 + 1) + 𝑐𝑛−1]

∞

𝑛=1

+ 𝑐1 = 0 
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Step 5: Set the coefficients equal to zero.  This time we have two conditions. 
 

𝑐1 = 0 
 

𝑐𝑛+1𝑛(𝑛 + 1) + 𝑐𝑛+1(𝑛 + 1) + 𝑐𝑛−1 = 0 
 
Rearranging this last one we get: 
 

𝑐𝑛+1(𝑛(𝑛 + 1) + (𝑛 + 1)) = −𝑐𝑛−1 

𝑐𝑛+1 = −
𝑐𝑛−1

(𝑛 + 1)2
 

 
This is still a recursive algorithm with a step of two, but it starts at n=1 just like our summation did.  
When n=1, we’ll get 𝑐0 on the right and 𝑐2 on the left.  However, one of our sequences, that starting at 
n=2, where we get 𝑐1, the entire sequence after that will be zero.  This is a terminating sequence (in this 
case, it terminates before it even gets started.) 
 
Step 6: Plugging in some of these n’s we get: 
 

n=1 𝑐2 = −
𝑐0
22

 n=2 𝑐3 = −
𝑐1
32

= 0 

n=3 𝑐4 = −
𝑐2
42

=
𝑐0

2242
 n=4 𝑐5 = −

𝑐3
52

= 0 

n=5 𝑐6 = −
𝑐4
62

= −
𝑐0

224262
 n=6 𝑐7 = −

𝑐5
72

= 0 

 
We thus have one solution which looks like:  
 

𝑦1 = 𝑐0 [1 −
1

22
𝑥2 +

1

2242
𝑥4 −

1

224262
𝑥6 +⋯] = ∑

(−1)𝑘𝑥2𝑘

22𝑘(𝑘!)2

∞

𝑘=0

 

 
The fact that we got only one solution here and not two of them is an indication that something is amiss.  
At a singular point, even a regular one, we are not guaranteed two solutions.  We’ll redo this problem 
later with Frobenius’ Theorem to see if we can get a condition for a second solution. 
 
 
Example 3. Solve the differential equation (𝑥 + 1)𝑦′′ − (2 − 𝑥)𝑦′ + 𝑦 = 0 at the ordinary point x=1. 
 
Since we know this is an ordinary point, we can proceed with our usual approach and expect two 
solutions.  We have a bit of a problem with our coefficients, and it will be easiest to deal with those now.  
To bring any polynomial coefficients inside the sum, we’ll need them to have the same form as the 
geometric term we are using, which will be (x-1).  We need to rewrite our coefficients so that we have 
the form (x-1) and some extra constant. 
 

𝑥 + 1 = (𝑥 − 1) + 2 
−(2 − 𝑥) = 𝑥 − 2 = (𝑥 − 1) − 1 

 
So now our equation looks like this: 
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[(𝑥 − 1) + 2]𝑦′′ + [(𝑥 − 1) − 1]𝑦′ + 𝑦 = 0 
 
To simplify this visually, I’m going to make the substitution 𝑢 = 𝑥 − 1.  Our proposed solution will then 
be 𝑦 = ∑ 𝑐𝑛(𝑥 − 1)𝑛 =∞

𝑛=0 ∑ 𝑐𝑛𝑢
𝑛∞

𝑛=0  and our differential equation is: (𝑢 + 2)𝑦′′ + (𝑢 − 1)𝑦′ + 𝑦 = 0. 
 

Since this is merely a translation 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
.  We can solve the equation in this form, and then out it back in 

terms of (x-1) when we are finished.  You can just work with the differential equation as we’ve 
rearranged it with x-1 still in place, but the expressions will be longer and take more paper to write out.  
Hopefully, this will be easier to follow with less clutter. 
 
Let’s now do the replacements for the derivatives: 
 

(𝑢 + 2)∑ 𝑐𝑛𝑛(𝑛 − 1)𝑢𝑛−2
∞

𝑛=2

+ (𝑢 − 1)∑ 𝑐𝑛𝑛𝑢
𝑛−1

∞

𝑛=1

+ ∑𝑐𝑛𝑢
𝑛

∞

𝑛=0

= 0 

 
Step 1: To combine the coefficients, we’ll need to split up the parentheses. 
 

𝑢∑ 𝑐𝑛𝑛(𝑛 − 1)𝑢𝑛−2
∞

𝑛=2

+ 2∑ 𝑐𝑛𝑛(𝑛 − 1)𝑢𝑛−2
∞

𝑛=2

+ 𝑢∑𝑐𝑛𝑛𝑢
𝑛−1

∞

𝑛=1

− ∑𝑐𝑛𝑛𝑢
𝑛−1

∞

𝑛=1

+∑𝑐𝑛𝑢
𝑛

∞

𝑛=0

= 0 

 
Then bring everything inside the summations. 
 

∑𝑐𝑛𝑛(𝑛 − 1)𝑢𝑛−1
∞

𝑛=2

+∑2𝑐𝑛𝑛(𝑛 − 1)𝑢𝑛−2
∞

𝑛=2

+ ∑𝑐𝑛𝑛𝑢
𝑛

∞

𝑛=1

−∑𝑐𝑛𝑛𝑢
𝑛−1

∞

𝑛=1

+ ∑𝑐𝑛𝑢
𝑛

∞

𝑛=0

= 0 

 
 
Now we have many more sums to work with, but our general procedure is exactly the same as before. 
 
Step 2: Match the powers in each sum by adjusting the starting index in each sum. 
 
The first sum has to come down by one since we need the power to come up by one.  The second sum 
needs to be adjusted by 2 in the same direction.  The third sum is fine as it is.  The fourth sum needs to 
be adjusted by one just like the first two.  And the last one is fine as it is. 
 

∑𝑐𝑛+1𝑛(𝑛 + 1)𝑢𝑛
∞

𝑛=1

+∑2𝑐𝑛+2(𝑛 + 2)(𝑛 + 1)𝑢𝑛
∞

𝑛=0

+ ∑𝑐𝑛𝑛𝑢
𝑛

∞

𝑛=1

−∑𝑐𝑛+1(𝑛 + 1)𝑢𝑛
∞

𝑛=0

+ ∑𝑐𝑛𝑢
𝑛

∞

𝑛=0

= 0 

 
 
Step 3: All the starting indices now need to be matched.  Remember, we are matching them to the 
highest starting index, and we’ll pull out and lower terms.  We have two sums starting at n=1, and three 
starting at n=0.  These last three sums, we’ll pull out the n=0 term.  (Do be careful of the signs.) 
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∑𝑐𝑛+1𝑛(𝑛 + 1)𝑢𝑛
∞

𝑛=1

+ 2𝑐2(2)(1)𝑢
0 + ∑2𝑐𝑛+2(𝑛 + 2)(𝑛 + 1)𝑢𝑛

∞

𝑛=1

+ ∑𝑐𝑛𝑛𝑢
𝑛

∞

𝑛=1

− 𝑐1(1)𝑢
0

− ∑𝑐𝑛+1(𝑛 + 1)𝑢𝑛
∞

𝑛=1

+ 𝑐0𝑢
𝑜 + ∑𝑐𝑛𝑢

𝑛

∞

𝑛=1

= 0 

 
Step 4: The loose terms are all constants, so they can be collected, as well as the sums now combined. 
 

∑𝑢𝑛[𝑐𝑛+1𝑛(𝑛 + 1) + 2𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) + 𝑐𝑛𝑛 − 𝑐𝑛+1(𝑛 + 1) + 𝑐𝑛]

∞

𝑛=1

+ 4𝑐2 − 𝑐1 + 𝑐0 = 0 

 
A slightly better expression can be obtained by collecting the 𝑐𝑖 terms together. 
 

∑𝑢𝑛[𝑐𝑛+1(𝑛 − 1)(𝑛 + 1) + 2𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) + 𝑐𝑛(𝑛 + 1)]

∞

𝑛=1

+ 4𝑐2 − 𝑐1 + 𝑐0 = 0 

 
Step 5: Our coefficient relationships are then: 
 

4𝑐2 − 𝑐1 + 𝑐0 = 0 → 𝑐2 =
𝑐1 − 𝑐0

4
 

𝑐𝑛+1(𝑛 − 1)(𝑛 + 1) + 2𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) + 𝑐𝑛(𝑛 + 1) = 0 
 
Cancelling out the n+1 in the last expression gives us: 
 

𝑐𝑛+1(𝑛 − 1) + 2𝑐𝑛+2(𝑛 + 2) + 𝑐𝑛 = 0 → 𝑐𝑛+2 =
−𝑐𝑛 − 𝑐𝑛+1(𝑛 − 1)

2
 

 
In this case, we’re not going to get two nice strings that depend only on every other value.  Instead, 
we’re going to get later coefficients that depend on two previous coefficients.  But given the first 
relationship from the constants, we’ll always be able to reduce these down to expressions that depend 
only on 𝑐0 and 𝑐1.  When we separate these, we’ll be able to get two solutions from them. 
 
Step 6: We need to solve now for the first couple coefficients so that we can state the first couple terms 
of our solution.  We won’t need to solve for n=8 to get 4 terms each since we’ll get terms for both series 
at the same time, but there may be more algebra involved to simplify. 
 

n=0 𝑐2 =
𝑐1 − 𝑐0

4
 

n=1 
𝑐3 =

−𝑐1 − 𝑐2(0)

2
=
−𝑐1
2

 

n=2 
𝑐4 =

−𝑐2 − 𝑐3(1)

2
= −

1

2
(
𝑐1 − 𝑐0

4
) −

1

2
(
−𝑐1
2

) =
𝑐1 + 𝑐0

8
 

n=3 
𝑐5 =

−𝑐3 − 𝑐4(2)

2
= −

1

2
(
−𝑐1
2

) − (
𝑐1 + 𝑐0

8
) =

𝑐1 − 𝑐0
8

 

n=4 
𝑐6 =

−𝑐4 − 𝑐5(3)

2
= −

1

2
(
𝑐1 + 𝑐0

8
) −

3

2
(
𝑐1 − 𝑐0

8
) =

−𝑐1
4

+
𝑐0
8
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To obtain our two solutions, collect the coefficients that go with 𝑐0 together, and the same for the ones 
with 𝑐1.  Don’t forget the term that starts the beginning of the sequence.  The subscript tells you what 
power it goes with.  Be sure to convert back to x’s when you’re done. 
 

𝑦1 = 𝑐0 [1 −
1

4
𝑢2 +

1

8
𝑢4 −

1

8
𝑢5 +

1

8
𝑢6 +⋯] = 

𝑐0 [1 −
1

4
(𝑥 − 1)2 +

1

8
(𝑥 − 1)4 −

1

8
(𝑥 − 1)5 +

1

8
(𝑥 − 1)6 +⋯] 

 

𝑦2 = 𝑐1 [𝑢 +
1

4
𝑢2 −

1

2
𝑢3 +

1

8
𝑢4 +

1

8
𝑢5 −

1

4
𝑢6 +⋯] = 

𝑐1 [(𝑥 − 1) +
1

4
(𝑥 − 1)2 −

1

2
(𝑥 − 1)3 +

1

8
(𝑥 − 1)4 +

1

8
(𝑥 − 1)5 −

1

4
(𝑥 − 1)6 +⋯] 

 
It doesn’t look like there is a nice way to write these sums, so we’ll leave them as they are. 
 
We’ll do one last example to revisit Example 2.  We saw that when we expanded around x=0, which was 
a singular point in that equation, we only got one solution.  It may be that there is only one, but let’s try 
it again using Frobenius’ Theorem to see if we can find a condition for a second solution. 
 
Example 4. Solve the differential equation 𝑥𝑦′′ + 𝑦′ + 𝑥𝑦 = 0 using a series solution centered at x=0.  
(This is a regular singular point.) 
 
Frobenius’ Theorem states that we can solve the equation at the regular singular point by using 𝑦 =
∑ 𝑐𝑛(𝑥 − 𝑥0)

𝑛+𝑟∞
𝑛=0  instead of our regular assumption.  If we can find a condition on r, we may be able 

to get a solution we would not have obtained otherwise.  Let’s try it. 
 

𝑥∑𝑐𝑛(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝑛+𝑟−2
∞

𝑛=2

+ ∑𝑐𝑛(𝑛 + 𝑟)𝑥𝑛+𝑟−1
∞

𝑛=1

+ 𝑥∑ 𝑐𝑛𝑥
𝑛+𝑟

∞

𝑛=0

= 0 

 
Step 0: Before we can proceed, we’re going to factor out the 𝑥𝑟 and discard it (since it can’t be equal to 
zero everywhere.  We now have an expression that looks very much like before, but our coefficients 
now have r in them.  By continuing through the same steps as before, we hope to obtain a condition on 
r.  
 

𝑥𝑟 [𝑥∑ 𝑐𝑛(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝑛−2
∞

𝑛=2

+ ∑𝑐𝑛(𝑛 + 𝑟)𝑥𝑛−1
∞

𝑛=1

+ 𝑥∑ 𝑐𝑛𝑥
𝑛

∞

𝑛=0

= 0] 

 
Step 1: Bring any coefficients inside the summations.  Here, this means the x’s. 
 

∑𝑐𝑛(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝑛−1
∞

𝑛=2

+∑𝑐𝑛(𝑛 + 𝑟)𝑥𝑛−1
∞

𝑛=1

+ ∑𝑐𝑛𝑥
𝑛+1

∞

𝑛=0

= 0 

 
Step 2: Make all the exponents of x the same.  Sometimes we might have to have starting indices 
starting below zero, but that’s okay for now.  These will get fixed in a later step, and we’ll still produce a 
recursive algorithm.  You can choose to make them all 𝑥𝑛 or 𝑥𝑛+1.  I’m going to go ahead and work with 
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the former.  In the first two sums I’m replacing n with n+1 to bring the index down and keep the power 
the same.  In the last one, I’m replacing n with n-1 and increasing the index.  Be sure to make these 
replacements everyone including the subscripts. 
 

∑𝑐𝑛+1(𝑛 + 𝑟)(𝑛 + 𝑟 + 1)𝑥𝑛
∞

𝑛=1

+∑𝑐𝑛+1(𝑛 + 𝑟 + 1)𝑥𝑛
∞

𝑛=0

+ ∑𝑐𝑛−1𝑥
𝑛

∞

𝑛=1

= 0 

 
I brought the first two sums down by one to increase the exponent, and the last index up by one to 
decrease the power. 
 
Step 3: We need to make all the starting indices the same.  We’ll do this here by finding the highest 
starting index value and hold those fixed.  Any sums that start at a small index, we will peel off an 
appropriate number of terms until we can start at the same place as the highest one.  In this case, two 
of our summations start at 1, and one starts at 0.  So the middle one needs to have the n=0 case 
removed.  The loose term is the case where I’ve set n=0. 
 

∑𝑐𝑛+1(𝑛 + 𝑟)(𝑛 + 𝑟 + 1)𝑥𝑛
∞

𝑛=1

+ 𝑐1(𝑟 + 1)𝑥0 + ∑𝑐𝑛+1(𝑛 + 𝑟 + 1)𝑥𝑛
∞

𝑛=1

+∑𝑐𝑛−1𝑥
𝑛

∞

𝑛=1

= 0 

 
Step 4. Collect the summations together and factor out the common 𝑥𝑛 to get a single coefficient 
expression.  Collect any loose terms with the same power. 
 

∑𝑥𝑛[𝑐𝑛+1(𝑛 + 𝑟)(𝑛 + 𝑟 + 1) + 𝑐𝑛+1(𝑛 + 𝑟 + 1) + 𝑐𝑛−1]

∞

𝑛=1

+ 𝑐1(𝑟 + 1) = 0 

 
Step 5: Set the coefficients equal to zero.  This time we have three conditions, one of them on r. 
 

𝑐1 = 0 or 𝑟 + 1 = 0 → 𝑟 = −1 
 

𝑐𝑛+1(𝑛 + 𝑟)(𝑛 + 𝑟 + 1) + 𝑐𝑛+1(𝑛 + 𝑟 + 1) + 𝑐𝑛−1 = 0 
 
Rearranging this last one we get: 
 

𝑐𝑛+1(𝑛 + 𝑟)(𝑛 + 𝑟 + 1) + (𝑛 + 𝑟 + 1)) = −𝑐𝑛−1 

𝑐𝑛+1 = −
𝑐𝑛−1

(𝑛 + 𝑟 + 1)2
 

 
If we let 𝑐1 = 0, we get the last column of values we had before with all the coefficients equal to zero.  
Thus, we’ll let r=(-1)  And obtain the following relation: 
 

𝑐𝑛+1 = −
𝑐𝑛−1

(𝑛 − 1 + 1)2
= −

𝑐𝑛−1
(𝑛)2

 

 
 
Step 6: Plugging in some of these n’s we get: 
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n=1 𝑐2 = −
𝑐0
12

= −𝑐0 n=2 𝑐3 = −
𝑐1
22

 

n=3 𝑐4 = −
𝑐2
32

=
𝑐0
32

 n=4 𝑐5 = −
𝑐3
42

=
𝑐1

2242
 

n=5 𝑐6 = −
𝑐4
52

= −
𝑐0

3252
 n=6 𝑐7 = −

𝑐5
62

=
−𝑐1

224262
 

 
Because of our incorrect assumption before, our answer is a little off.  We do have a series of 
coefficients, but the powers they belong to are off by one.  The two solutions we’ve obtained here are 
the correct solutions. 
 
 

𝑦1 = 𝑐0 [1 − 𝑥2 +
1

32
𝑥4 −

1

3252
𝑥6 +⋯] = ∑

(−1)𝑘𝑥2𝑘

[1 ∙ 3 ∙ 5 ∙ … (2𝑘 + 1)]2

∞

𝑘=0

 

𝑦2 = 𝑐1 [𝑥 −
1

22
𝑥3 +

1

2242
𝑥5 −

1

224262
𝑥7 +⋯] = ∑

(−1)𝑘𝑥2𝑘+1

22𝑘(𝑘!)2

∞

𝑘=0

 

 
It should be noted that the regular series solution case, when solved at an ordinary point, guarantees 
that you should obtain the correct number of solutions that matches the order of the equation: second 
order equations should get two solutions.  However, Frobenius’ Theorem is working in a domain where 
such solutions are not guaranteed.  It may be that you obtain two solutions for a second order, or one, 
or possibly, if no condition on r is found, none at all. 
 
 
Practice Problems.  If no point is specified, center you solution around zero if zero is an ordinary point, 
or 1 if it is not.  If neither of these points are ordinary nor a regular singular point, state that instead of 
solving. 

a. 𝑦′′ − 𝑦 = 0, 𝑥0 = 0 
b. 𝑦′′ + 4𝑦 = 0, 𝑥0 = 1 
c. 𝑦′′ + 4𝑦′ + 4𝑦 = 0, 𝑥0 = 0 
d. 𝑦′′ − 𝑦 = 0, 𝑥0 = 3 
e. 𝑦′′ + 𝑥𝑦′ + 2𝑦 = 0, 𝑥0 = 0 
f. 𝑥𝑦′′ + 𝑦′ + 𝑥𝑦 = 0, 𝑥0 = 1 
g. 𝑥(𝑥 + 3)2𝑦′′ − 𝑦 = 0 

h. 𝑦′′ −
1

𝑥
𝑦′ +

1

(𝑥−1)3
𝑦 = 0 

i. 2𝑥𝑦′′ − 𝑦′ + 2𝑦 = 0 
j. 2𝑥2𝑦′′ − 𝑥𝑦′ + (𝑥2 + 1)𝑦 = 0 
k. 𝑥𝑦′′ = 𝑥𝑦′ + 𝑦 = 0 
l. 𝑥2𝑦′′ − 2𝑦 = 0 
m. 𝑥2𝑦′′ + 5𝑥𝑦′ + 4𝑦 = 0 
n. 𝑥3𝑦′′′ − 6𝑦 = 0 
o. (𝑥2 + 1)𝑦′′ + 2𝑥𝑦′ = 0 
p. (𝑥2 + 2)𝑦′′ + 3𝑥𝑦 − 𝑦 = 0, 𝑥0 = 1 

 
 


