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Higher-Order Differential Equations: 
Mechanical Vibrations & Forcing Functions 

 
 

We’ve spent considerable time looking at solution methods for linear ordinary differential 
equations.  We will next look at higher-order equations involving higher-order derivatives.  We 
will begin with second-order equations, equations of the form: 
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where y is a function of time.  Equations of this form can be used to describe electrical circuits 
and mechanical vibrations, and more.   
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In the case of mechanical vibrations (of a spring-mass, for instance), m is the mass at the end of 
the spring, p is the damping term and k is from Hooke’s law.    
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The system for a circuit with resistance is similar, where the L is the inductance, R the 
resistance, and C the capacitance. 
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The solution for a pendulum system (with damping neglected) also belongs to this type of 
model with L the length of the pendulum and g the gravity constant. 
 

The solution to the homogenous equation, the complementary solution, cy , is assumed to have 

the form ( ) mt

cy t Ae= .  By applying derivatives ( ) mt

cy t Ame =  and 2( ) mt

cy t Am e =  to the 

equation above, we find that  
 

( ) ( )2 0mt mt mta Am e b Ame cAe+ + =  

 

And if we factor out mtAe , we have the auxiliary equation (sometimes called the characteristic 

equation) 2 0am bm c+ + = .  The zeros of this equation will provide us possible value for m in 
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our complementary solution.  Any and all zeros of this function will work, so if there is more 
than possible zero, the complementary solution will contain both possibilities.  Initial conditions 
will determine the coefficients for each term. 
 
The form of the solutions we obtain for the auxiliary equation will determine the behaviour of 
the system. 
 

➢ When the system is undamped (b=0), the system will oscillate forever (c>0) 
➢ When the system is damped (b≠0), three possible situations may occur: 

o The system may be underdamped ( 2 4 0b ac−   the roots of the system are 
complex), the system will oscillate, but the amplitude will approach zero. 

o The system may be critically damped ( 2 4 0b ac− =  the roots of the system are 
real and repeating) 

o The system may be overdamped ( 2 4 0b ac−   the roots of the system are real 
and non-repeating).  In both of the last two cases, the system will approach zero 
without undergoing a single oscillation. 

 
Let’s consider some examples. 
 
Example 1: Undamped. 
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The auxiliary equation is 2 9 0m + = , giving us m = ±3i. 
 
In the case of complex solutions, like this one, we use the identity (Euler’s) 

cos sini te t i t  = + , so in this case, our solution will 

be of the form 1 2( ) cos(3 ) sin(3 )cy t c t c t= + . (The i can 

be eliminated by choosing an appropriate coefficient, 
so it is left out of the solution.)  The form of this 
equation makes sense, since when we take two 
derivatives of sine or cosine functions we end up with 
constant multiples of the same function.  The values of 
the coefficients must be found using initial conditions. 
 

This graph produced with 1 2 1c c= = .  Changing the 

amplitude of one trig function produces a phase shift as 
well as a change in amplitude.  Indeed, our result with 
our coefficients known, can be rewritten as a single sine 

wave with phase shift.  We leave that as an exercise for the reader. 
 
These long-term oscillations are typical of the pendulum example. 
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Example 2: Underdamped. 
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Our auxiliary equation is 2 2 5 0m m+ + = .  The roots of this equation must be obtained from 
the quadratic formula: 
 

22 2 4(1)(5) 2 4 20 2 16
1 2

2(1) 2 2
i

−  − −  − −  −
= = = −   

 

If we have ( 1 2 )mt i te e − += , applying exponential rules and the identity from Example 1, we get: 
 

( 1 2 ) 2 (cos(2 ) sin(2 ))mt i t t it te e e e e t i t− + − −= = = +  

 
Thus our solution is of the form 

1 2( cos(2 ) sin(2 ))t

cy e c t c t−= +  for our problem.  More 

generally, if our solution is of the form a±bi, our solutions 
for the homogeneous case take the form 

1 2( cos( ) sin( ))at

cy e c bt c bt= + . 

 
As we can see from the graph, the system will oscillate for 
a time, but with the amplitude decreasing toward zero.  
For most of the systems we will solve for, the oscillations 
will appear to die out rather rapidly.  Only systems with 
extremely small damping coefficients will oscillate for any 
significant length of time on its own. 

 
Example 3: Overdamped 
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In the case of overdamping, the system will not oscillate, 
not even through a single cycle, but will rather go to zero.  
The system may pass through zero once before 
approaching zero, but whether it does or not will depend 
on the initial conditions of the system. 
 

Our auxiliary equation 2 5 4 0m m+ + =  has zeros at -1 and 

-4.  Our solution then takes the form 4

1 2

t

cy c e c e− −= + . 
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Example 4: Critically Damped 
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In the case of a critically damped case, our auxiliary 

equation results in repeated roots.  Here, 2 2 1 0m m+ + = , 
and we have a single (repeated) root at m = -1.  We will 

have one component of the solution as te− , but to capture 
the influence of the second root, we must find a way for the 
second term to somehow differentiate itself from the first 

one.  We will therefore multiply the second term by t: tte− .  

Thus, 
1 2

t t

cy c e c te− −= + . 

 
Example 5. Higher-Orders 
 
Equations with third and fourth (and higher-order derivatives) can also be solved this way, by 
finding roots of the auxiliary equation.  For example: 
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This fourth order equation has roots of the auxiliary 

equation 4 25 4 0m m+ + =  of i  and 2i .  So, our proposed 
general solution would be 

1 2 3 4sin( ) cos( ) sin(2 ) cos(2 )cy c t c t c t c t= + + + . 

 
 

 
 

Non-homogeneous Equations 
 
 
Suppose we consider the homogeneous equation we considered above: 
 

2

2
0

d y dy
a b cy

dt dt

   
+ + =  

  
 

 
But now, we are going to add a forcing function, i.e.  
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The forcing function will continue adding energy to the system.  If the natural oscillations die 
out, the forcing function may dominate the resulting behaviour of the system. Or, if the forcing 
function has the same frequency as the natural frequency of the system, it may cause the 
system to increase in energy until it fails.  Forcing functions are a very important component of 
modeling real world engineering behaviour.  As we will see, the form of the particular solution 

py  will depend on the form of the forcing function. 

 

Our final solution for the whole system will be ( ) c py t y y= +  

 
➢ Real world forcing functions include earthquakes, wind, walking (pedestrians on a 

bridge, for instance).  Can you think of any others? 
 

We can use the following guidelines for determining py : 

 ( )f t  is a polynomial: use all terms of degree less than or equal to the degree of the 

highest term 

o Suppose 4( )f t t= , then 2 3 4

py A Bt Ct Dt Et= + + + +  

o Suppose ( )f t t= , then py A Bt= +  

 ( )f t  is an exponential: then kt

py Ae=  

o Suppose 2( ) tf t e−=  (and -2 is not a root of the auxiliary equation of the 

homogeneous case), then 2t

py Ae−= . 

o Suppose 2( ) tf t e−= (and -2 is a (unrepeated) root of the auxiliary equation of the 

homogeneous case), then 2t

py Ate−=  

o Suppose 2( ) tf t e−=  (and -2 is a (once repeated) root of the auxiliary equation of 

the homogeneous case), then 2 2t

py At e−= . 

Multiply by powers of t until it is higher than any term in cy . 

 ( )f t  is a sine or cosine function, then cos sinpy A t B t = +  

o Suppose ( ) sin(2 )f t t=  (and 2i is not a root of the auxiliary equation), then 

sin(2 ) cos(2 )py A t B t= +  

o Suppose ( ) sin(2 )f t t=  (and 2i is a root of the auxiliary equation), then 

sin(2 ) cos(2 )py At t Bt t= +  

As with the exponentials, multiply by powers of t for repeated roots until your py  

solution has terms which are unique relative to cy . 

 ( )f t is a product of terms of these types, we essentially combine the properties.  For 

instance: 
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o Suppose 2( ) sinf t t t= , then 
2 2sin cos sin cos sin cospy A t B t Ct t Dt t Et t Ft t= + + + + +  

 If ( )f t  contains multiple terms, each term (or set of related terms) can be taken 

separately. 

o If 2 2( ) sin(3 )tf t x te t−= + +  then 
2 2 2 sin(3 ) cos(3 )t t

py A Bt t De Ete F t G t− −= + + + + + +  

 
 
Example 6: Forcing Function on an Underdamped System 
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We found in Example 2 above that 
1 2( cos(2 ) sin(2 ))t

cy e c t c t−= + .  Even though the frequencies 

of the sine and cosine functions are the same as our forcing function here, the root is -1±2i, not 
just ±2i.  So, even though they look similar, we don’t have to treat this as if we are repeating a 

root.  Thus our py  has the form sin(2 ) cos(2 )py A t B t= + .  While 1 2,c c  depend on initial 

conditions, the unknown coefficients in py  depend on the equation.  To find them, we’ll have 

to take  derivatives and solve from there. 
 

2

2

sin(2 ) cos(2 )

2 cos(2 ) 2 sin(2 )

4 sin(2 ) 4 cos(2 )

p

p

p

y A t B t

dy
A t B t

dt

d y
A t B t

dt

= +

= −

= − −

 

     

   

4 sin(2 ) 4 cos(2 ) 2 2 cos(2 ) 2 sin(2 ) 5 sin(2 ) cos(2 ) 6sin(2 )

4 sin(2 ) 4 cos(2 ) 4 cos(2 ) 4 sin(2 ) 5 sin(2 ) 5 cos(2 ) 6sin(2 )

4 sin(2 ) 4 sin(2 ) 5 sin(2 ) 4 cos(2 ) 4 cos(2 ) 5 cos(2 )

A t B t A t B t A t B t t

A t B t A t B t A t B t t

A t B t A t B t A t B t

− − + − + + =

− − + − + + =

− − + + − + + = 6sin(2 )t

 

sin(2 )[ 4 ] cos(2 )[ 4 ] 6sin(2 )t A B t B A t− + + =  

4 6

4 0

A B

A B

− =

+ =
 

 

Solving for A and B, we get 
6 24

,
17 17

A B= = − .  Thus 

6 24
sin(2 ) cos(2 )

17 17
py t t= −  and our complete solution for 

the system is 
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1 2

6 24
( ) ( sin(2 ) cos(2 )) sin(2 ) cos(2 )

17 17

ty t e c t c t t t−= + + − . 

 
 

➢ You try it: Let 2( )f t t=  for the same differential equation in Example 7.  Find py . 

Did you get 22 4 1

125 25 5
py t t= − − + ? 

 
Problems: 
For each problem below, solve the homogeneous system. 

1. 2 0y y y − + =  

2. 9 0y y + =  

3. 16 24 9 0y y y − + =  

4. 25 40 16 0y y y − + =  

5. 6 12 8 0y y y y  − + + =  [Hint: if you can’t factor, try graphing the auxiliary equation.] 

6. 2 4 0y y y − + =  

7. 4 6 0y y y + + =  

8. 9 0.6 0.01 0y y y  + + =  

9. 5 14 0y y y − − =  

10. 2 0IVy y y+ + =  

 
For each of the problems above, solve for the given forcing functions. 

1. ( ) , ( )t tf t e g t e−= =  

2. ( ) sin(4 ), ( ) sin(3 )f t t g t t= =  

3. ( ) , ( )t tf t e g t te− −= =  

4. 2( ) sin , ( )f t t t g t t= =  

5. 2 2 2( ) , ( )t tf t e g t t te= = +  

6. ( ) , ( ) sin(4 )t tf t e g t e t− −= =  

7. ( ) cos , ( ) costf t t t g t e t= =  

8. 2( ) , ( ) cos(2 )tf t e g t t= =  

9. 2( ) , ( ) 6 sintf t t te g t t−= + = +  

10. 2( ) sin , ( ) cos tf t t t g t t t e−= = +  

 

For #8, set up, but do not solve for 4 2( ) costf t t te t t−= + +  


