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Writing the Matrix of a Linear 

Transformation 
 
 
Once we’ve established that a mapping is linear, it’s often convenient to represent that transformation 
as a matrix.  This can be a bit challenging when the basis for the space is infinite dimensional; however, 
we can consider the behaviour of the transformation on a finite subspace in order to construct a finite 
matrix for the transformation. 
 
We will begin our discussion of linear transformation as close to the standard matrix form as possible, 
and then work our way toward more abstract spaces. 
 

Consider the mapping 𝑇: 𝑥⃗ ∈ 𝑅4 ↦ 𝑇(𝑥⃗) ∈ 𝑅3 given by 𝑇 ([

𝑥1

𝑥2

𝑥3
𝑥4

]) = [

2𝑥1 − 𝑥4

𝑥1 + 2𝑥2 + 𝑥3

−𝑥2 + 5𝑥3 − 3𝑥4

].  Write the 

matrix of the linear transformation. 
 
We can verify quickly that this transformation is linear, as it will satisfy all the conditions of a linear 
transformation.  So it can be written as a matrix.  What will this matrix have to look like?  Recall that a 
mapping from 𝑅𝑛 ↦ 𝑅𝑚 is an mxn matrix.  So our matrix here will be a 3x4 matrix, and 𝑇(𝑥⃗) = 𝐴𝑥⃗.  
 

To find the entries of A consider the generic 3x4 matrix: 𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

   

𝑎14

𝑎24

𝑎34

].  If we multiply by 

the vector [

𝑥1

𝑥2

𝑥3
𝑥4

], let’s take one row of the matrix at a time. 

 

Consider [𝑎11 𝑎12 𝑎13 𝑎14] [

𝑥1

𝑥2

𝑥3
𝑥4

] = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4 = 2𝑥1 − 𝑥4.  So for these 

expressions to be equal for any 𝑥𝑖, we need 𝑎11 = 2, 𝑎12 = 0, 𝑎13 = 0, 𝑎14 = −1. 
 
Repeat this for each row of the matrix. 
 

[𝑎21 𝑎22 𝑎23 𝑎24] [

𝑥1

𝑥2

𝑥3
𝑥4

] = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑎24𝑥4 = 𝑥1 + 2𝑥2 + 𝑥3 

[𝑎31 𝑎32 𝑎33 𝑎34] [

𝑥1

𝑥2

𝑥3
𝑥4

] = 𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + 𝑎34𝑥4 = −𝑥2 + 5𝑥3 − 3𝑥4 

 
Consequently, 𝑎21 = 1, 𝑎22 = 2, 𝑎23 = 1, 𝑎24 = 0, 𝑎31 = 0, 𝑎32 = −1, 𝑎33 = 5, 𝑎34 = −3. 
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So  𝐴 = [
2 0 0
1 2 1
0 −1 5

   
−1
0

−3
]. 

 
You’ll also notice that if each column represents the individual variables, the entries in each column are 
the coefficients of each variable on each line of the mapping. 
 

Example 1.  Find the matrix of the linear transformation 𝑇: 𝑥⃗ ∈ 𝑅2 ↦ 𝑇(𝑥⃗) ∈ 𝑅4 given by 𝑇 ([
𝑥1

𝑥2
]) =

[

4𝑥1 + 5𝑥2

𝑥1 − 3𝑥2

−𝑥2

9𝑥1 − 6𝑥2

]. 

 

This matrix will be a 4x2, and 𝐴 = [

4 5
1 −3
0 −1
9 −6

]. 

 
 
Example 2.  Consider the polynomial in the standard basis 𝑝(𝑡) = 4 + 2𝑡 − 𝑡2.  We can represent this 
polynomial in 𝑃2 (since its highest degree is degree 2) as a vector in 𝑅3 (since there are three 

components we need to account for (𝑡0, 𝑡1, 𝑡2).  In this case, the vector would be 𝑝 = [

𝑎0

𝑎1

𝑎2

] for some 

generic vector in 𝑃2, and 𝑝 = [
4
2

−1
] for this polynomial specifically.  Suppose we had a mapping 

𝑇: 𝑝 ∈ 𝑃2 ↦ 𝑇(𝑥⃗) ∈ 𝑃3, where T is given by 𝑇(𝑝) = (𝑡 − 3)𝑝(𝑡).  Find the matrix that represents T. 
 
It helps here to perform the multiplication on a generic p(t) vector. 
 

(𝑡 − 3)𝑝(𝑡) = (𝑡 − 3)(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2) = 𝑎𝑜𝑡 + 𝑎1𝑡

2 + 𝑎2𝑡
3 − 3𝑎0 − 3𝑎1𝑡 − 3𝑎2𝑡

2 
 
Collecting like terms we have: 
 

(𝑡 − 3)𝑝(𝑡) = (−3𝑎0) + (𝑎0 − 3𝑎1)𝑡 + (𝑎1 − 3𝑎2)𝑡
3 + (𝑎2)𝑡

3 
 
Since this polynomial is now in 𝑃3, we need 4 components to represent it as a vector in the way we did 

above.  So 𝑇(𝑝) = [

−3𝑎0

𝑎0 − 3𝑎1

𝑎1 − 3𝑎2
𝑎2

]. 

 

Given that, we can represent it as a matrix in the same way we did in Example 1.  𝐴 = [

−3 0 0
1 −3 0

0     1 −3
0     0   1

]. 
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Example 3.  Suppose we have a function in the space defined by constant multiples of 
sin(𝑡) , cos(𝑡) , sin(2𝑡) , cos (2𝑡), which is to say all functions of the form 𝑦(𝑡) = 𝑎1 sin(𝑡) + 𝑎2 cos(𝑡) +
𝑎3 sin(2𝑡) + 𝑎4cos (2𝑡).  Since this is defined by 4 free variables 𝑎𝑖, this set of functions acts like a 

vector in 𝑅4, i.e. 𝑦⃗ = [

𝑎1

𝑎2

𝑎3
𝑎4

].  Consider the linear transformation defined by the derivative operation.  

What is the derivative of y(t)?  𝑇(𝑦(𝑡)) = 𝑦′(𝑡) = 𝑎1 cos(𝑡) − 𝑎2 sin(𝑡) + 2𝑎3 cos(2𝑡) − 2𝑎4sin (2𝑡), 

or if we put them in the same order as the functions in the original y(t) we get 𝑇(𝑦) = −𝑎2 sin(𝑡) +
𝑎1 cos(𝑡) − 2𝑎4 sin(2𝑡) + 2𝑎3 cos(2𝑡).  Recalling that the locations in the vector account for the 

trigonometric functions themselves, the new vector is now 𝑇(𝑦⃗) = [

−𝑎2

𝑎1

−2𝑎4

2𝑎3

].  How can we represent this 

as a matrix?  If 𝑇(𝑦⃗) = 𝐴𝑦⃗, then 𝐴 = [

0 −1
1   0

0    0
0   0

0   0
0   0

0 −2
2   0

].  It’s easy to show that if you multiply the 

original y(t) in vector form by the matrix, you do get the resulting vector representation of the 
derivative. 
 
Example 4.  Take the function defined above on the same space, and consider instead the antiderivative 
function (one where we insist that the constant of integration is zero).  Here ∫𝑦(𝑡) 𝑑𝑡 = −𝑎1 cos(𝑡) +

𝑎2 sin(𝑡) −
1

2
𝑎3 cos(2𝑡) +

1

2
𝑎4sin (2𝑡).  Reorganize as we did in Example 3, and then the vector 

𝑇(𝑦⃗) =

[
 
 
 
 

𝑎2

−𝑎1
1

2
𝑎4

−
1

2
𝑎3]

 
 
 
 

.  Thus the matrix of the linear transformation is 𝐴 =

[
 
 
 
 

0 1
−1 0

0    0
0   0

0   0
0   0

0
1

2

−
1

2
  0]

 
 
 
 

.  You can check 

your answer by noting that if you take the derivative, and then integrate, you should get back to the 
same function, which is to say in matrix terms, you multiply by the identity.  And it’s easy to show that if 
you multiply the derivative matrix by the anti-derivative matrix, you get back the identity matrix. 
 
In addition to these methods, you can also build a matrix of a linear transformation using a set of 
standard transformation matrices listed in our textbook.  If you want to find the matrix that creates a 
series of such transformations, you can simply multiply the appropriate transformation matrices 
together. 
 
For instance, we have such matrix transformations as: 

a) Rotation matrix [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] for a counterclockwise rotation 

b) Expansion or compression matrix: [
𝑎 0
0 𝑏

] scales in the 𝑥1 direction by a, and scales in the 𝑥2 

direction by b.  (These scaling factors can be the same or different.  If one of them is zero, then 
the matrix is called a projection matrix.) 

c) Reflections: Across an axis, these look like the rotation matrix for 𝜃 =
𝜋

2
, 𝜋,

3𝜋

2
.  Across the lines 

𝑥1 = 𝑥2 or 𝑥1 = −𝑥2 look like [
0 1
1 0

] , [
0 −1

−1 0
] respectively. 
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d) Shear matrices: [
1 𝑘
0 1

] , [
1 0
𝑘 1

] shear in the 𝑥1 direction and the 𝑥2 direction respectively. 

 
If we wanted to build a three dimensional situation where the transformation in two dimensions 
corresponds to one of these operations, we can use them as models in 2 of the three dimensions.  For 
instance, if I wanted, in 𝑅3 to rotate a vector by an angle θ in the x-z plane, and leave the y-direction 

unchanged, my matrix would look like 𝐴 = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]. 

 
Example 5.  Find a matrix that transforms a vector in 𝑅2 to another vector in 𝑅2 through a rotation of 
30° clockwise, reflects over the line 𝑥1 = 𝑥2, and then stretches the 𝑥2 component by a factor of 2. 
 

The clockwise angle is a negative 𝜋/6, so the rotation matrix becomes: [

√3

2

1

2

−
1

2

√3

2

].  The reflection matrix 

is [
0 1
1 0

].  And the scaling matrix for 𝑥2 only is [
1 0
0 2

].  Their product is: [

√3

2

1

2

−
1

2

√3

2

] [
0 1
1 0

] [
1 0
0 2

] =

[

1

2
√3

√3

2
−1

]. 

 
 
 
Practice Problems. 
For each of the linear transformations below, write the matrix of the linear transformation. 

1. 𝑇: 𝑥⃗ ∈ 𝑅3 ⟼ 𝑇(𝑥⃗) ∈ 𝑅3, where T is given by 𝑇 ([

𝑥1

𝑥2

𝑥3

]) = [

2𝑥1 − 4𝑥2

𝑥1 − 𝑥3

−𝑥2 + 3𝑥3

]. 

2. 𝑇: 𝑥⃗ ∈ 𝑅2 ⟼ 𝑇(𝑥⃗) ∈ 𝑅3, where T is given by 𝑇 ([
𝑥1

𝑥2
]) = [

3𝑥1 − 2𝑥2

𝑥1 + 4𝑥2

𝑥2

]. 

3. 𝑇: 𝑥⃗ ∈ 𝑅4 ⟼ 𝑇(𝑥⃗) ∈ 𝑅4, where T is given by 𝑇 ([

𝑥1

𝑥2

𝑥3
𝑥4

]) = [

𝑥1 + 2𝑥2

0
2𝑥2 + 𝑥4
𝑥2 − 𝑥4

]. 

4. Consider a polynomial in 𝑃2 given by 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2.  Define a linear operator T by 

𝑇(𝑝(𝑡)) = (2𝑡2 − 𝑡 + 6)𝑝(𝑡) in 𝑃4.  Find the matrix of the transformation.  [Hint: See Example 

2.] 
5. Consider a polynomial in 𝑃2 given by 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2.  Define a linear operator T by 

𝑇(𝑝(𝑡)) = (𝑡3 − 4)𝑝(𝑡) in 𝑃5.  Write the matrix of the transformation. 

6. Consider a polynomial in 𝑃3 given by 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3.  Find the matrix of the 

linear transformation taking this vector into 𝑃2 defined by the derivative operator 
𝑑

𝑑𝑡
[𝑝(𝑡)].  

[Hint: See Example 3.] 
7. Consider a polynomial in 𝑃3 given by 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + 𝑎3𝑡
3.  Find the matrix of the 

linear transformation taking this vector into 𝑃4 defined by the antiderivative 

operator∫ (𝑝(𝑥)𝑑𝑥
𝑡

0
.  [Hint: See Example 4.] 
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8. Consider the function defined as 𝑦(𝑥) = 𝑎1𝑒
𝑥 + 𝑎2𝑒

−𝑥 + 𝑎3𝑒
5𝑥 + 𝑎4𝑒

−7𝑥.  Write the matrix of 

the linear transformation defined by the derivative operator 
𝑑

𝑑𝑥
[𝑦(𝑥)].   

9. Consider a function defined as 𝑦(𝑥) = 𝑎1𝑒
3𝑥cos (2𝑥) + 𝑎2𝑒

3𝑥sin (2𝑥).  Write the matrix of the 

linear transformation defined by the derivative operator 
𝑑

𝑑𝑥
[𝑦(𝑥)].   

10. For the same situation as in Problem #9, find the second derivative transformation matrix. 
11. Find linear transformation matrix that transforms a vector in 𝑅2 by rotating it counterclockwise 

by 225°. 
12. Find a linear transformation matrix that transforms a vector in 𝑅2 by first shearing it with factor 

k=3, and then reflecting it about the line 𝑥1 = −𝑥2. [Hint: see Example.] 
13. Find a linear transformation matrix that transforms a vector in 𝑅3 by rotating it through an angle 

2𝜋/3 in the 𝑥2𝑥3-plane, then scales the 𝑥1, 𝑥2 directions by a factor of 4 and 2 respectively, and 
then reflects along the line 𝑥1 = 𝑥3. 


