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GRADIENTS AND LEVEL CURVES 
 
There is a close relationship between level curves (also called contour curves or isolines) and the 
gradient vectors of a curve.  Indeed, the two are everywhere perpendicular.  This handout is going to 
explore the relationship between isolines and gradients to help us understand the shape of functions in 
three dimensions.  This is a common application in physics when considering lines of force and the lines 
of equal force, or other similar applications in electricity and magnetism and other fields. 
 
Let us first recall briefly how level curves (isolines) work as we translate from three dimensions into a 
two-dimensional graph. 
 
We start with a three-dimensional function.  And we slice that function with a plane along specific 
values of one of the variables (typically the z-direction), and then project that intersection onto the two-
dimensional plane.  We repeat this process over and over at different levels of z to to obtain a series of 
embedded curves that trace out the shape of the graph at fixed heights.  If we know which direction z is 
increasing or decreasing in, we can in principle, uncollapse the graph to reconstruct the original 
function. 
 
Below are displayed some examples of three dimensional curves and their associated level curves 
projected onto a two-dimensional surface. 
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Recall that the gradient of a function given by    〈
  

  
 
  

  
 
  

  
〉 represents the direction the surface is 

increasing it at a given point on the surface.  Because gradients represent not only the rate of the 
increase, but also the direction of greatest increase, the gradient is always at right angles to the isolines 
where no change is taking place. 
 
So consider for a paraboloid graph, whose level curves are circles, 
the gradient points radially outward from the origin.  The 
relationship between the two is shown in the next graph.  As the 
gradient, whose form for a paraboloid with a circular cross-section is 
〈         〉, get closer to the origin they get shorter, and further 
away from the origin they get longer, but they always point in the 
same direction along any radial line from the origin, and so they are 
always perpendicular to the contour curves marking out the surface 
as it increases away from the center. 

 
The gradient tells us the missing information about the third 
dimension, which is the direction of increase.  The spacing of 
level curves themselves can give us information about the rate 
of increase.  The more closely spaced they are, the faster the 

increase, but by themselves, they 
cannot tell us whether the curve is 
increasing or decreasing.  It’s the 
gradient that gives us that. 
 
So consider the graph below showing 
the gradient only.  What can you tell 
about the function it was derived 
from?  Even without graphing the function we can see that there are two 
critical values on the graph.  The vectors point in the direction of a point at 
(-1,0).  This is a maximum value since the gradient is increasing toward the 
point at the center.  The second point at (1,0) is a saddle point.  Notice that 
the gradient is vertically moving toward the point (increasing), but 
horizontally is moving away from the point (decreasing). 
 
Shown is the graph of the function with x as the horizontal axis, z as the 
vertical axis, and y is coming out of the paper. 
 
It’s also possible to work backwards from the gradients and obtain the level 
curves even without the original function.  Since the gradient and isolines 
are mutually perpendicular, you can draw lines the connect gradients.  The 
level curve lines for the gradient and function shown here are illustrated 
below. 
 



  Betsy McCall 

 
3 

 
Our goal for this handout will be to 
start with the gradient and sketch 
the general shape of the level 
curves (and vice versa).  This will 
give us our most complete picture 
of a three dimensional graph 
without having to be an artist. 
 
One way of proceeding is to begin 
with a function that we’d like to 
sketch, but this technique is most 
useful when we don’t have the 

function, and only the gradient or lines of force. 
 
Example 1. 
Sketch the gradient, and use that to draw the level curves, of the function  ( )            
          . 
 
We begin by finding the gradient.     〈                  〉  .  Since the function is explicit, 
we need only concern ourselves here with the derivatives for x and y. 
 
At this point, we could choose a series of points that mark out a grid for our plane and begin to draw 
gradient vectors.  This is tedious to do by hand.  We are most interested here in the primary features of 
the graph and it’s general shape, so this level of detail is not required unless you have a computer 
program that can produce the graph for you.  Instead, we are going to sketch the curves where each 
partial derivative is zero.  This will divide the graph into several regions where the behaviour of the 
graph will be similar inside the region, and change as you cross the lines marking the critical lines. 
 

For 
  

  
         , when we set this equal to zero, solving for y is quite simple.          .  

When doing this by hand for 
  

  
, you can solve for y and graph the function that way, or if using a 

graphing program as I am, solve for y.  This may be more difficult, involve multiple square roots, involve 
completing the square, or other potential hazards.  In 

this case if 
  

  
  , then            , and thus 

   √
    

 
.  And so we obtain the graph shown to the 

right. 
 
One thing we can immediately see from the graph is 
that there are four points of intersection.  Since these 
lines represent the lines where the two partial 
derivatives are zero, we know that there are 4 possible 
extrema. 
 
We can also see that the graph is divided into seven 
regions.  The regions are numbered on the next graph. 
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For each one of these regions, we should choose a 
point to determine the direction of the gradient.  This 
will give us a good overall picture of the function, and 
allow us to determine the character of the critical 
points. 
 
The table shows the region, the points selected and 
the values of the gradients determined from those 
points.  
 

Region        

1 -10 2 〈      〉 
2 -1 4 〈     〉 

3 5 4 〈      〉 
4 5 0 〈       〉 

5 -1 0 〈      〉 

6 -10 0 〈       〉 
7 -1 -2 〈    〉 

 
The magnitude of the vectors is not especially important to us here, but we are interested in the 
directions they are pointing in.  Consider the graph below focused on region #7 in the graph above. 
 
Notice that the gradient arrows are all pointing toward 
the leftmost intersection on this graph.  This is going to 
be a maximum since the direction of the arrows is the 
directions of greatest increase. 
 
The intersection of the right, however, is going to be a 
saddle point.  The arrows are pointing the direction of 

the green line (
  

  
), but away from the red line (

  

  
).  

This means that the derivatives are of mixed sign here, 
and so we will have a saddle point. 
 
Let’s similarly zoom in on the other two intersections. 

 
 
 
For the left intersection on this graph, the arrows are 

approaching the red line (
  

  
), but moving away from 

the green line  (
  

  
).  This is a saddle point.  But the right 

intersection has all the arrows pointing away from it.  
The means that the intersection is a local minimum, 
since all directions of increase must point away from it. 
 

1 2 3 

4 

5 6 

7 1 
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To complete the picture of the gradient, recall that when 
  

  
 is zero, the y-coordinate of the gradient 

vector is zero, and so the gradient must be vertical all along that line.  Similarly, when 
  

  
 is zero, the 

gradient has a zero x-coordinate, and so the gradient vectors must be horizontal.  
 
We can use this information to sketch the level curves 
since, recall that they must be perpendicular to the 
gradients. 
 
Around the right intersection, they are going to look like 
circles around the minimum.  On the left side of the 
graph they are going to curve away from the saddle 
point. 
 
If you can’t visualize this, look at the graph at the top of 
page #3.  The relationship of the extrema and the saddle 
point are flipped, but it will give you a good idea of what 
the level curves must be doing here. 
 

The graph on the left is the graph of the region around the minimum, and 
its nearby saddle point.  The one on the right is the region around the 
maximum and its nearby saddle point. 
 
 
One other thing to note about these types of graphs is that it’s quite 
common for the gradient field to flip sign as it crosses the zero lines. 

Notice that on the graph above that as you cross the red line (
  

  
), the 

vectors across the top three regions flips from <+,+> to <-,+> vectors, and then crossing the red line 

again, flips from <-,+> vectors to <+,+> again.  Similarly, as the vectors cross the green line (
  

  
), the 

vectors flip from <+,+> along the left two regions, to <+,-> vectors.  Unless the partial derivatives are 
perfect squares, this is typical behaviour.  We can use this tendency when we don’t have a function to 
check, but if we have the function, or at least the gradient vector, we should check explicitly rather than 
assume a particular behaviour. 
 
Our goal for the next section is to achieve a graph like 
the one shown.  For that, we will need a more detailed 
graph of the gradient field. 
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Example 2. 
From a gradient field, sketch the level curves of 
the graph.  
 
Consider the gradient field shown below.  The 
key to drawing the isolines from the gradient 
field is to sketch perpendicular line segments at 
the end of each gradient vector, and then to 
connect those perpendicular segments into a 
complete curve. 
 
The second graph below shows the same graph 
with the perpendicular segments at the end of 
each vector.  And then the third graph shows the 
isolines sketched into complete curves.  Unlike 
the example graph, I have not added additional 
isolines to represent the rate of increase, but 
you could place those into the graph easily by 
sketch additional curves between the existing 
ones. 
 
If you look carefully at the direction of the gradient field, the arrows are pointing toward the center of 
the circular feature on the right.  This is a maximum.  The feature on the left is a saddle point. 

 
 
 
Practice Problems.  

1. For each of the gradient graphs below, sketch the isolines.  For each graph, if there are any 
critical points, determine whether each is a maximum, minimum or saddle point. 



  Betsy McCall 

 
7 

2. Use the idea that gradients are 
perpendicular to level curves to 
sketch the gradient field for the 
graph below.  Assume that blues 
are lower values, and reds are 
larger values to determine the 
direction of your vectors.  Note 
any critical points or other 
interesting features, including 
saddle points. 
 
 
 
 

C 

C 
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3. Following the method in Example 1, for each of the following equations, analyze the graph by 
graphing the partial derivatives and analyzing the gradient field in each region of the plane. 
a.  (   )     
b.  (   )     ( )    ( ) 
c.  (   )      
d.  (   )           

e.  (   )  
 

       
 

f.  (   )           

g.  (   )  
   

    
 

h.  (   )              

i.  (   )  
 

 
 
 

 
    

j.  (   )                     
k.  (   )        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
i Figure 3  is by Joseph K. Berry http://www.innovativegis.com/basis/mapanalysis/Topic18/Topic18.htm 

 


