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Triple Integrals 
 
 
The most difficult thing about setting up triple integrals is visualizing what is going on.  Part 
of the reason for this is because we aren’t used to thinking of graphs in three dimensions.  
They are hard to draw.  One of the techniques we will consider is thinking of the graphs in 
two dimensions, a slice of the full graph, to orient us in for the first set of limits, and then 
our equations will reduce naturally to two dimensions, and then we will be back on more 
familiar territory.  Another reason for the difficulty is that we may be working in coordinates 
we aren’t that familiar with, such as cylindrical or spherical.  It takes practice to get good at 
these, but at some level, we can treat some of it algebraically. 
 
We work with these different systems of coordinates because they may make the integration 
simpler, or, at the very least, doable in one integral, as opposed to several integrals.  I will 
do no integrating here, we will only be setting up integrals.  But to be sure that you are doing 
it correctly, you should be able to get the same answer out of every version, though you may 
need math software to verify this without a great deal of work for some problems. 
 

Example 1. Find the volume bounded by the graphs of 
2 29z x y= − −  and 2 2 9z x y= + − . 

The graph of the two functions is shown here in wireframe.  
They are two intersecting paraboloids.  Let’s begin with 
rectangular coordinates. 
 
The limits in z are just the two functions.  They are both 
pointing basically vertically, and there is no change of top and 
bottom functions anywhere, unlike our last example. 
 
To get the x-y equations and limits, we need to set the two z 
equations equal to each other. 
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In the x-y plane, the projection of our region looks like a circle 
of radius 3, centered at the origin.  Our limits in y are given 
above, and the limits in x are then -3 to 3. 
 
Our integral then is: 
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This isn’t too horrible, but it will probably take trig substitution 
to finish integrating.  Compared to the first example, though, this 
is a piece of cake. 
 
Let’s try this in cylindrical coordinates. 
 
First, rewrite the equations for z in cylindrical.  Then solve for r. 
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It’s not difficult, as shown to get limits for r as 0 and 3.  And the limits for θ are 0 and 2π 
since we want to go all the way around the circle. 
 
Our integral then ends up being: 
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Spherical turns out to be the really hard one. Doing the conversion: 
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We need to solve for ρ. 
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Here, we are going to have to set up two separate integrals.  One for φ from 0 to π/2 
(remember, this is the level of the x-y plane), and one for π/2 to π.  However, because the 
graph is symmetrical above and below the axes, we can just do the top half of the graph, and 
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double it.  The solutions for ρ give away this symmetry.  And of course, θ goes from 0 to 2π 
because we go all the way around. 
 
Our final integral then is: 
 

21 1
csc 9 cot cot csc
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2
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This is better than what we saw on the first example, but still not great.  The square root 
term is the one that could be trickiest to integrate. 
 
In this example, there is one clear best choice: cylindrical coordinates has nothing but 
constants and polynomials in it.  Integrating this gives 81π. 
 
Let’s do one more difficult example to drive home the steps. 
 
 

Example 2.  Find the volume of the solid bounded by the graph of 
2 2 2 9x y z+ + =  and the 

graph of 2 4x y z+ + = . 

 
Let’s consider the graph of what we are looking at. 
 
This image is useful for us because the top half of the 
sphere and the bottom half of the sphere are 
coloured differently.  Fortunately, our plane only cuts 
through the top half of the sphere.  In general, planes 
may cut through part of one half and part of the 
other.  In such cases, we’d have to split the integral 
in two places: the portion bounded by the plane and 
sphere, and a second part bounded by just the 
sphere.  Compare with the second graph formed by 
the same sphere, and the plane x+z=1.  For some part 
of this graph the “top function” is the top half of the 
sphere, and the “bottom function” is the bottom half 
of the sphere.  For another part of the graph, the two 
functions are the top half of the sphere and the 
plane.  To set this up in rectangular coordinates, we 
are going to need two integrals, at least in 
rectangular coordinates, unless we are a bit clever.  
But this is a bit messy; and frequently triple integrals 
are unless the functions are very cleverly chosen.  
The original equations are chosen so that we will just 
have the one integral.  Find the limits for z by solving 
both equations for z. 
 



Betsy McCall 

 
4 

2 29

1 1
2
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x y

R
x y

dzdA

− −

− −

   

 
We don’t have to do z first, but it’s not likely another 
choice of initial variables will help much. 
 
To get the next set of limits, we need to find the 
intersections of the graphs in x and y.  Do a 
substitution to reduce the equations to a single 
equation in two variables. 
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We need to choose one of the variables to solve for.  I will choose y, but neither is going to be 
particularly pretty.  Treat x like a “constant”.  You are going to need to complete the square.  
Not pretty. 
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 
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 

 
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 
 

 
This looks atrocious, but I can graph it now. 
 
It’s an ellipse, a rotated ellipse, but an ellipse. 
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These equations, as ugly as they are, are the limits in the y-direction.  These equations are 

only defined when the square root is defined.  We can solve for 
2116 24 0x− =  to get our 

limits in x.  This leaves us with the final pair of integrals. 
 
 

2 2

2

2 22

1

9

1 1 4
3 116 24

15 5 52

3 1 1 4 9116 242
5 5 5

x y

R x y

x x
x y

x yx x

dzdA
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− −
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 
− − − 

− − 

 − − − −− − − − 
 

 

  

 

 
Do I want to actually integrate this mess?  No, not especially.  When they get this 
complicated, that’s what computers are for. 
 
Let’s see if we can choose a different set of coordinates and maybe get something a bit 
simpler. 
 
Next, try cylindrical. 
 
Because the z variable doesn’t change in cylindrical relative to rectangular, we are still going 
to be faced with the problem of having two integrals, or calculating what we don’t need and 
subtracting it off the total.  What will change is that our expressions for z will be functions of 
r and θ instead of x and y. 
 

2 2 9

1 1
2 cos sin

2 2

r z

z r r 

+ =

= − −
 

 
So our two integrals become: 
 

2

1 1
1 cos sin

2 2

9

r r

R r

dzdA

 − −

− −

   

 
As before, substitute one equation into the other and then solve for r. 
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2
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4 cos sin cos cos sin cos sin sin sin cos 9
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5 1
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r r r

r r r r r r r r r

r r r
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r
r

 

         

   

   

 
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 
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2

2
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20 5 2cos sin2(4cos 4sin ) 4cos 4sin 4cos 4sin

5 2cos sin 5 2cos sin 5 2cos sin5 2cos sin

4cos 4sin 100 40cos sin 16cos 16sin 32cos sin

5 2cos sin 5

r

r

 

      

      

       

 

+

++ + +   
− + = +   

+ + +   +

+ + + + + 
− = +  +( )

( )

2

2

2

2cos sin

4cos 4sin 116 62cos sin

5 2cos sin 5 2cos sin

116 62cos sin 4cos 4sin

5 2cos sin

r

r

 

   

   

   

 

+ + 
− = +  +

 + + +
=

+
 
 
We only need one version because they both graph the same.  
And surprise, it’s still one of those tilted ellipses. 
 
The limits in θ are just 0 to 2π. So, we end up with this: 
 
 

2

116 62cos sin 4cos 4sin 1 1
2 cos sin

2 5 2cos sin 2 2

0 0 9

r r

r

rdzdrd

   
 

  



+ + +
− −

+

− −

    

 
 
Well, that was even more atrocious.  Let’s try spherical.  We may have to try the same trick 
with spherical, since our plane cuts below the center, we will depend on ρ being negative for 
some parts of the calculation.  If we don’t get the same answer as before, we can subtract 
the result from the entire sphere as we did before; we don’t even have to change the limits.  
Therefore, I will only set up the one integral. 

  

3

sin cos sin sin 2 cos 4



       

=

+ + =
 

 
These are our original equations in spherical coordinates.  We need to solve the second 
equation for ρ. 
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sin cos sin sin 2 cos 4

4

sin (cos sin ) 2cos

       


   

+ + =

=
+ +

 

 
There’s no particular reason why we should start with ρ, but let’s do it anyway since it’s the 
easiest to solve for. 
 

3

2

4

sin (cos sin ) 2cos

sin
R

d dA

   

  

+ +

   

 
To get the next set of limits, we need to set the two ρ equations equal to each other and 
solve for, let’s say, φ. 
 

1
sin (cos sin ) 2cos

3
   + + =  

 

To do this, we are going to need some algebra tricks.  Let’s set cos sin  = + .  Our 

equation is now 
1

sin 2cos
3

  + = .  The trick we are going to do is divide the equation by 

24 + .  We then get: 

 

2 2 2

2 1
sin cos

4 4 3 4


 

  
+ =

+ + +
 

 
Consider the triangle shown at right. 
 
We are going to treat these coefficients as though 
they are the trig functions of this dummy angle ψ. 
 
On the right side, remember, it’s just a constant, but 
the left becomes. 
 

( )

2

2

1
sin sin cos cos

3 4

1
cos

3 4

   


 


+ =
+

− =
+

 

 
Solving for φ now: 
 

2  


 

24 +  

  
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( )
2

1 1

2 2

1

2

1
cos

3 4

1 1
cos cos

3 3

1
cos

4

 


   
 




− −

−

− =
+

   
− =  = +   

+ +   

 
=  

+ 

 

 
Putting α back to θs. 
 

( ) ( )

1 1

2 2

1 1

1 1
cos cos

3 4 cos sin 4 cos sin

1 1
cos cos

3 5 2sin cos 5 2cos sin


   


   

− −

− −

   
   = +
   

+ + + +   

   
= +   

+ +   

 

 
We start at the z-axis as φ=0, so this is just the upper limit.  And just to be clear, you can’t 
add these any more than you can add cosines with different angles. 
 
The limits in θ are still 0 to 2π. 
 
The final version of the triple integral is: 
 
 

1 11 1
cos cos

3 5 2sin cos 5 2cos sin2 3

2

10 0

sin (cos sin ) cos

sin d d d

   

   

    

− −   
+   

+ +   

+ +

    

 
Did I say this was messy?  This is a much harder problem than you will normally encounter, 
but it’s good in that it reveals a lot of little algebra tricks you can use to solve problems.  It 
also highlights the fact that in many problems you will be asked to set up the integral, but not 
necessarily to actually doing the integrating if it’s especially nasty.  One hopes to find 
problems that have enough symmetry in some coordinate system so that they reduce to 
something simple. 
 
Practice Problems.  Find the volume bounded by the graphs of the equations.  Set up the 
integrals in all three coordinate systems.  If you get a really easy one, as in Example 1, 
integrate it. 

1. 
2 , 3, 3,4 12 19z y x x y z= = = − + =  

2. 
2 24, 4, 10, , 1, 1x x z z y x y y= − = = − = − = − =  

3. 
2 2 2 1, 2, 4x y z z z+ − = = − =  

4. 
2 2 , 2 6z x y x y z= + + + =  

5. 
2 2 2 216, 9 , 0x z y x z y+ = = − − =  


