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Vector Fields & Potential Functions 
 
A vector field is best exemplified by a “force field”.  In each location in the plane, or in 
3-space, the field applies a force in a particular direction, and the strength and 
direction of that field changes depending on where one is in the place or the space.  A 
gravitational field is a relatively simple example, at least when there is only one 
dominant body, but electrical fields are another example that can easily be more 
complex with the introduction of dipoles and combinations of charged particles.  We 
will be looking at generic fields that don’t necessarily relate to specific examples, but 
what is covered here, can be applied to all these real-world examples. 
 
We first want to be able to graph a vector field so we can see what is going on.  We will 
concentrate on examples in two dimensions since they are easiest to draw on paper, 

but what we say can be extended to three dimensions, and we will show an image, 
drawn by a computer program, of what a three dimensional field might look like. 
 

Example 1. Let’s consider the vector field given by ( , )F x y yi x j   .  This field is 

defined by the coordinates of the point in the plane.  For instance, if the point in the 
plane is (1,2), then the vector in the field points in the direction <-2,1>.  We need to 
plot a fairly large number of vectors to get an idea of what the field is doing overall.  
We also will not be able to plot the vectors at their full length because then they will 
likely overlap with one another, making the field difficult to see.  We will therefore 
scale them by a constant factor, let’s say by 1/3 (if your vectors are longer, you will 
need a smaller scale factor so the vectors don’t run into each other).  This will still give 
us the direction and relative magnitude that we need. 
 
Begin by calculating the vectors that we need to plot the graph.  We will need to 
specify a point where the vector begins, the value of the vector at that point, the 
magnitude of the vector, and the magnitude of the vector we will plot.  We will need a 
minimum of 10 well-chosen vectors (i.e. not all on one line, or only on the axes), but 
for completeness, I will calculate more like 20ish. 
 

Point Vector Magnitude Scaled Length 

(0,0) <0,0> 0 0 

(1,0) <0,1> 1 1/3 

(0,1) <-1,0> 1 1/3 

(-1,0) <0,-1> 1 1/3 

(0,-1) <1,0> 1 1/3 

(1,1) <-1,1> 2  2
.47

3
  

(1,-1) <1,1> 2  2
.47

3
  

(-1,1) <-1,-1> 2  2
.47

3
  

(-1,-1) <1,-1> 2  2
.47

3
  
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(2,0) <0,2> 2 2/3 

(-2,0) <0,-2> 2 2/3 

(0,2) <-2,0> 2 2/3 

(0,-2) <2,0> 2 2/3 

(2,1) <-1,2> 5  5
.75

3
  

(-2,1) <-1,-2> 5  5
.75

3
  

(2,-1) <1,2> 5  5
.75

3
  

(-2,-1) <1,-2> 5  5
.75

3
  

(1,2) <-2,1> 5  5
.75

3
  

(1,-2) <2,1> 5  5
.75

3
  

(-1,2) <-2,-1> 5  5
.75

3
  

(-1,-2) <2,-1> 5  5
.75

3
  

(2,2) <-2,2> 2 2  2 2
.94

3
  

(-2,2) <-2,-2> 2 2  2 2
.94

3
  

(2,-2) <2,2> 2 2  2 2
.94

3
  

(-2,-2) <2,-2> 2 2  2 2
.94

3
  

 
Remember to plot each vector from the point that 

defines it, in the direction defined by the vector, and 
with magnitude defined by the scaled length.  When 
doing this by hand, don’t worry about being precise.  
We are looking for general properties, so eyeballing 
it is fine, but do aim for consistency. 
 
Our final plot looks like this: 
 
You see how as you go away from the origin, the 
vectors get bigger?  And in the center is what we 
call a stationary point, where nothing moves. 
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Plotting vector fields can seem tedious at first, but you’ll notice that you can often 
establish a pattern of points where the magnitudes will all be the same.  This will 
reduce your calculations, if you can be systematic in this way.  You will also often find 
that a pattern develops rather quickly.  Calculate a set of vectors in one quadrant, and 
then just make a transformation into the others. 
 

Example 2.  Let’s look at a three-dimensional example: 2( , , )F x y z x i xyz j zk   .  The 

vector field graph was obtained from a Java Applet posted on the Saint Louis 
University website. 
 
I chose this one to look a little crazier than the 
other one, but the procedure is essentially the 
same.  Study the graph.  Can you see any 
general trends in vector field?  If you put a 
particle in the field and let the field apply force 
to it, where will the particle end up?  Does it 
matter where it begins? 
 
 
Practice Problems.  Plot the 2-dimensional 
vector fields below.  Describe in words the 
shape of the field; what will happen to a 
particle placed in the field?  For the fields with 
denominators, you may wish to scale the 
vectors up instead of down (or not all all). 

a. ( , )F x y xi y j   

b. 2( , )F x y x i xy j   

c. ( , ) ( 1) ( 2)F x y x i y j     

d. 2 2( , ) ( )F x y x y i xy j    

e. 
2 2 2 2

1 1
( , )

( ) ( )
F x y i j

x y x y
 

 
 

f. 
2 2 2 2

( , )
( ) ( )

x y
F x y i j

x y x y
 

 
 

 
Certain types of vector fields have special properties that are important for solving 

problems.  One of these special properties if the vector field is the gradient of a 
function, called a potential function.  If such a function exists, the field is called 
conservative.  Many real-world problems have such potential functions.  Let’s first 
consider an example where we know the potential function in advance, and then how 
to calculate it from the field in both two and three dimensions. 
 
Example 3.  Find the conservative vector field associated with the potential function 

2( , ) ln( )f x y x y . 

 
We need to calculate the gradient of the function. 
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2 2 2 1
( , ) ln( ) ln( )f x y x y i x y j i j

x y x y

 
    

 
 

 

Example 4.  Find the potential function for the field ( , ) ( 1) ( 2)F x y x i y j    .   

 

For a vector field of the form  ( , )F x y Mi N j  , M is the partial derivative with respect 

to x of the alleged potential function, and N is the partial derivative with respect to y of 
the alleged potential function.  Integrate with respect to the appropriate variable to 
start with. 
 

2

2

1
1 ( )

2

1
2 2 ( )

2

Mdx x dx x x g y

Ndy y dy y y h x

    

      

 

 

 

 
Any terms in either integral that have both x and y terms, must match or there is no 
potential function.  In this case, there are no cross terms.  The M integral can 
reconstruct the x-only terms of the potential function, but not the y-only terms.  The N 
integral can reconstruct the y-only terms of the potential function.  We need to 
combine the matching xy-terms, and the x-only terms from the first integral, and the 
y-only terms from the second integral to get the potential function.  Here, our result is: 
 

2 21 1
( , ) 2

2 2
f x y x x y y K      

 
 Where K is some constant of integration. 
 
Let’s try a three-dimensional example. 
 
Example 5. Find the potential function for the field 

2( , , ) ( 2 ) ( 4 2 ) ( 2 3 )F x y z yz x y i xz y x z j xy y z k          .   

 
I’ve picked a deliberately complicated one to see the kinds of things that can happen.  
As with the two-dimensional case, for a vector field of the form 

( , , )F x y z Mi N j Pk   , we need to integrate each term with respect to the 

appropriate variable, M with respect to x, N with respect to y, and now P with respect 
to z. 
 

2

2

2 3

2 ( , )

4 2 2 2 ( , )

2 3 2 ( , )

Mdx yz x ydx xyz x xy g y z

Ndy xz y x zdy xyz y xy yz h x z

Pdz xy y z dz xyz yz z j x y

      

        

      

 

 

 

 

 
Any terms that have all three variables in them must match. 
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2

2

2 3

2 ( , )

4 2 2 2 ( , )

2 3 2 ( , )

Mdx yz x ydx xyz x xy g y z

Ndy xz y x zdy xyz y xy yz h x z

Pdz xy y z dz xyz yz z j x y

      

        

      

 

 

 

 

 
The next check is that the xy terms in the M and N integrals must match, the yz terms 
in the N and P integrals must match, and the zx terms in the M and P integrals must 
match. 
 

2

2

2 3

2 ( , )

4 2 2 2 ( , )

2 3 2 ( , )

Mdx yz x ydx xyz x xy g y z

Ndy xz y x zdy xyz y xy yz h x z

Pdz xy y z dz xyz yz z j x y

      

        

      

 

 

 

 

 
There are no zx terms, and the others do match.  All these go into the potential 
function.  Also, any terms that have only one variable can only be reconstructed by the 
one integral, so they all go into the potential function. 
 

2 2 3( , , ) 2 2f x y z xyz xy yz x y z K        

 
Finding potential functions can be a hassle if there actually isn’t one.  Rather than try 

to calculate it, you can first test to see if it exists.  In two dimensions, if 
M N

y x

 


 
 then 

a potential function does exist.  (This is like saying that 
xy yxf f  for the unknown 

potential function.)  In three dimensions, calculate the curl of the field.  If the curl is 
identically zero, then the potential function does exist. 
 
Practice Problems.  Calculate the potential function, if it exists, or prove that it does 
not. 

g. 2 3( , ) (2 ) ( 2 )xy xy xyF x y xe x ye i x e y j     

h. 3 4 4 3( , ) (2 ) (2 )F x y x y x i x y y j     

i. 2 2 2( , , ) (2 ) ( 3) ( 2 )F x y z xyz z i x z j x y xz k       

j. ( , ) cos sin cosF x y z yi xz y j x yk    

 
 
 
 

 
 
 


