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Deriving the Arc Length Formula 
 
 
Deriving the formula for the length of arc along a curve employs a number of techniques used to derive 
other formulas, particularly in physics, so we will treat it at some depth here.  The general technique 
involves some basic geometry, a series of approximations which are summed, and then converting this 
sum in the limit, to an integral we can then compute. 
 
Consider the function f(x) shown here.  We’d like to calculate the 
length of the curve between x=a and x=b. 
 
The first crude approximation we could attempt would be the 

distance formula between (   ( )) and (   ( )).  That distance 

is shown by the red line on the graph.  This would give us the 

formula   √(   )  [ ( )   ( )] .  (s is used to represent 
the length of the arc instead of d for distance.)  At best, however, 
this can only give us some kind of lower bound for the true length 
of the arc.  It will only be correct if our function f(x) is a straight 
line. 
 
But suppose we extend this technique a little further, and only 
apply it to smaller subsections of the same graph? 
 
Here, I’ve divided up the graph into several smaller 
segments (11 in this case).  This arrangement much 
more closely follows the curve, and our approximation 
will be much better.  Still not perfect, but better than 
before.  We can derive a formula for this scenario by 
looking at the endpoints of two arbitrary sections of 
the graph.  Choosing some starting point x on the 
interval [a,b], and some fixed distance down the graph 
  , using the same distance formula as above, we get 

   √(         )
  ( (      )   (  ))

 
 

√(   )
  ( (      )   (  ))

 
.  Here the 

subscripts indicate that we are going to do this for a 
fixed segment.  And then to get our approximate arc length for the curve, we add up the various 
segments, or   ∑   

 
   . 

 
To extend this to an arbitrarily large number of segments, we need to notice something about our 
formula for   .  It looks suspiciously like part of the derivative formula for f(x).  Recall that 

  ( )     
    

 (    )  ( )

  
, and the second term under our radical looks very much like the numerator.  

To see this more clearly, we can do some algebra on the expression. 
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Now, we see that the second term under the radical is clearly just the derivative  
 

  (  )     
     

 (      )   (  )

   
 

 
 
And so we replace that in the formula to get 
 

   √  [  (  )]
     

 
Then we take the sum of our n segments. 
 

  ∑  

 

   

 ∑√  [  (  )]
    

 

   

 

 
And finally, we let n become arbitrarily large and take the limit as n goes to infinity. 
 

     
   

∑√  [  (  )]
    

 

   

 

 
This expression should look similar to something we’ve seen before as well.  Recall the form of the 
Riemann sum for the definite integral was 
 

∫  ( )  
 

 

    
   

∑ (  )   

 

   

 

 

Where here, our  ( )  √  [  ( )] . 
 
Thus, the integral formula for the arc length is given by 
 

  ∫ √  [  ( )] 
 

 

   

 
 
In the future we will use the same technique to derive other versions of the arc length formula for 
parametric equations, polar equations, and multiple variable equations.  We can also use this method 
for deriving a formula for the surface area of revolution. 
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Now that we have the formula, we have other more practice problems to deal with.  Working with this 
formula is not especially easy: easy enough to set up, but not always easy to perform the integration in 
practice. For the algebra to work, it is generally necessary to have very special functions that will cancel 
nicely with the square root in order to permit integration by hand.  Or else, we must use more advanced 
techniques like trigonometric substitution.  When these methods fail (and they generally will for 
arbitrary functions), we must resort to numerical methods to evaluate the integral. 
 
Practice Problems. 

1. For each of the following functions, find the arc length by hand on the given interval.  Give your 
answers in exact form, and then approximate them to 4 decimal places. 

a.  ( )  
 

 
   

 

  
 [   ]  [Hint: you will need to FOIL, reduce and refactor under the radical.] 

b.  ( )  
 

 
 
 
 ⁄  [    ] 

c.  ( )  
 

 
   

 

   
 [   ] 

d.  ( )    (    )  [
 

 
 
  

 
] 

e.  ( )      ( )  [   ] 

f.  ( )    (
    

    
)  [       ] 

2. The formula for the arc length does not depend on which variable we call dependent or 
independent.  Indeed, if x is a function of y, we can derive the formula for the arc length to be 

  ∫ √  [  ( )] 
 

 
  .  Use this formula to find the arc length of the curved below. 

a.  ( )  
 

 
(    )

 
 ⁄  [   ] 

b.  ( )  
 

 
√ (   ) [   ] 

3. The following functions will produce arc length integrals that cannot be easily integrated using 
basic techniques.  Use advanced integration techniques to integrate the functions, and verify 
the numerical approximation from your graphing calculator produces similar results. 
a.  ( )       [   ] 

b.  ( )  
 

 
 [   ] 

c.  ( )       [   ] 
d.  ( )      [   ] 
e.  ( )        ( )  [   ] 

4. Find the length of the arc along the following curves.  Hint, the graphs are symmetrical, so find a 
segment of the graph (say ½ or ¼ of it) to eliminate any concern with negative signs, and then 
multiply that portion by 2 or 4 as appropriate to get the length of the complete graph. 
a. The arc length of the circle given by         

b. The arc length of the astroid given by  
 
 ⁄   

 
 ⁄   . 

5. Compare the arc lengths on the interval [0,1] for each of the following functions.  What do you 
notice about the lengths of the curves as the power changes? 
a.     
b.      
c.      
d.      

e.   √  

f.    
 
 ⁄  

g.   √ 
  


