Instructions: Attempt to answer these questions by reading the textbook or with online resources before coming to class on the date above.

1. How do we find the expected value of a continuous distribution? How does this formula compare with the discrete formula for expected values?

 $\mu_{X} = E(x) + \int_{-\infty}^{\infty} x \cdot f(x) dx$

2. State two versions of the formula for the variance? Express both versions in terms of integrals.

 $\int_{x}^{2} = V(x) = \int_{\infty}^{\infty} (x-\mu)^{2} f(x) dx = E[(x-\mu)^{2}] = E(x^{2}) - [E(x)]^{2}$ $= \int_{-\infty}^{\infty} x^{2} f(x) dx - [\int_{-\infty}^{\infty} x f(x) dx]^{2}$ 3. What is the formula for the normal distribution? What parameters are involved?

 $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$ m=mean T = Standard deviation 1 = mean

4. What are the values of the parameters in the standard normal distribution? How does this simplify the function?

M=0, (=1 f(=10,1)= 15TT e- 3/2

5. What special notation(s) is (are) used to represent the standard normal function and its cumulative distribution?

Z used for variable instead &x D(z) unsked of F(z)

6. How can we use the calculator to find percentiles of the standard normal curve? What about non-standard normals?

normalcof (-E99, X, M, J) if, non-standard normalcof (- E99, x) = D(=)

7.	How can we use the calculator to find probabilities with the standard or general normal distributions?
	F(a≤x≤b) for x normal is
	normaledy (a, b, M, o) can leave M, o of G Standard normal
8.	What is a z critical value? What is the notation for it?
	Za where x is the probability above (or below) That z value valore is positive, below is negative
9.	The book gives a list of common z critical values. Verify these values with your calculator.
	Use invNorm (a) to find values tail
10	. How can we convert the random variable X with a general normal distribution to a standard score Z with a standard normal distribution? Give the formula.
	$Z = \frac{X - \mu}{\sigma}$
11	. Why might we want to perform this conversion?
	Why might we want to perform this conversion? if we are use a table of standard normal values instead by a Calculator; or to compare values from different what is the Empirical Rule? Normal dishibutions
12	What is the Empirical Rule? Normal dis his butions
	and Standardewards of the
ĺ	about (8%) of area between (-2 and) 2 St dev's and 99.7% within 3 St alsout 95% between (-2 and) 2 St dev's and 99.7% within 3 St alsout 95% between (-2 and) 2 St dev's and 99.7% within 3 St alsout 95% between (-2 and) 2 St dev's and 99.7% within 3 St also a subtract 0.5 from the discrete value?
13	subtract 0.5 from the discrete value?
-	subtract 0.5 from the discrete value? Thenk about forming a bein around the value 3 of 3 as the medpoint what are all the values that round (normally) to 3 medpoint.
	[2.5, 3.5). Called a continuity cornection.
1	4. Under what conditions can we approximate binomials with a normal distribution? What do we use for μ and σ ?
	when both np≥ 10 and ng≥10
	let u=np and r= Jupg

15. Poisson distributions can also be approximated with normal distributions. What are μ and σ in this case? Does it require the continuity correction we used for the binomial? What conditions are necessary to make this approximation for the Poisson distribution?

M=M, T=VM it does require the continuity cornection since the Poisson as discrett

let u = 10 is safe.