MAT 135, Discussion Questions 5.04

1. What is the formula for the test-statistic for two independent samples?

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2 + s_2^2}}$$

2. What is the formula for the degrees of freedom for the two-sample t-test? If you don't use this formula, what is a reasonable, conservative estimate?

assume smaller sample size
$$df = \left[\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right]^2$$

$$\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2$$

3. What is the formula for the confidence interval for a two-sample test?

4. Why do we generally not use Pooled T-tests? What assumptions have to be made when we do used a pooled test?

assumes standard deviations are the same. Should not use unless good reason to Thenk So

5. Two Dutch researchers conducted a study in which two groups of students were asked to answer 42 questions from Trivial Pursuit. The students in group I were asked to spend 5 minutes thinking about what it would mean to be a professor, while the students in group II were asked to think about soccer hooligans. Then 200 students in group I had a mean score of 23.4 with a standard deviation of 4.1, while the 200 students in group II has a mean score of 17.9 with a standard deviation of 3.9. Is this strong evidence that the priming had a positive effect on scores?

$$X_1 = 23.4$$

 $8x_1 = 4.1$ $x_1 = 200$
 $x_2 = 17.9$

Ho: $\mu_1 = \mu_2$ $X_1 = 23.4$ $X_2 = 23.4$ $X_3 = 23.4$ $X_4 = 23.4$ $X_5 = 23.4$

6.	Under what conditions can you use each of the following tests?	
	a. A dependent two-sample t-test	
	paired data	
	b. An independent two-sample t-test	
	unknown Standard deviations	
	(or small samples)	
	c. An independent two-sample z-test	
	unpaired data	
	laige sample sizes	
	Known population Standard deviations	
	d. A two-sample proportion test	
	2 proportions $n \rho_i \ge 10, n(1-\rho_i) \ge 10$	
	no, ≥10, n(1-p,)≥10	
	mpz ≥10, n(1-P2) ≥10	
7.	Provide a situation where you'd have to use each of the tests above (they can be textboo problems).	k
	answers will vary	