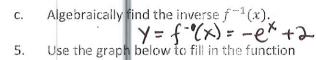
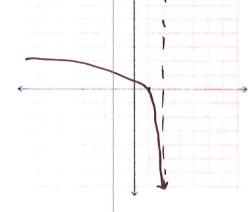

MTH 161, Practice Exam #3, Spring 2019

1. Find the function f that is finally graphed after each of the following transformations is applied to $y = 2^x$.

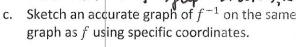
a. Reflect about the x-axis.

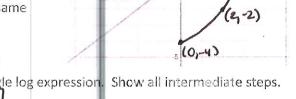

- b. Shift down one unit. $f(x) = -2^{x} - 1$
- 2. Sketch a graph of a function which is not one-to-one.
- 3. A student writes that $(\ln 2)^3 = 3 \ln 2$ by the power property of logarithms. Explain why this is incorrect.
- 4. Consider the function $f(x) = \ln(2-x)$. Sketch an accurate graph of the function on graph below.


State and label intercepts and asymptotes.

(1,0) (0, n2) X=2

The function is one-to-one. How can you tell from the graph? passes honzonful line test




values.

a. $f(0), f(-2), f^{-1}(2), f^{-1}(4)$ f(0) = 2828 f(-2) = 2 $f^{-1}(2) = -2$ $f^{-1}(4) = 4$ b. Find the domain and range. How does this relate

to the domain and range of $f^{-1}(x)$? $f: DE-4, \infty)$, $R: [0, \infty)$ f^{-1} ; flip $D: [0, \infty)$, $RE-4, \infty)$ c. Sketch an accurate graph of f^{-1} on the same

(2,828,0)

- 6. Use the properties of logarithms to write the expression $\ln x + \frac{1}{2}\ln(4-x) - \ln 9$ as a single log expression. Show all intermediate steps.

 7. Use properties of logs to expand the expression in terms of logs of the variables and simplify.
- Show all steps.

a.
$$\ln\left(\frac{4\sqrt{x}}{8y}\right) \frac{1}{4} \ln x - \ln 8 - \ln y$$
 b. $\log_2(8x^3) \log_2 8 + 3\log_2 x$

b.
$$\log_2(8x^3)$$
 $\log_2 8 + 3\log_2 x$

8. Use the change of base formula to rewrite the expression $\log_2 0.47$ in terms of natural $\log_2 0.47$

- 9. An initial investment of \$50,000 grows at an annual interest rate of 7% compounded continuously. Use the model $A=Pe^{rt}$ to calculate how long it will take to triple. Show your calculation and express your answer as an exact expression. 15.7 years ~ 1/13 = t
- 10. Find the exact value of the expression.

a.
$$3\ln(e^2)$$

b.
$$\log(10^{14}) - 10^{3\log 2}$$
 6

11. Solve the following expressions algebraically. Give exact values.

a.
$$2^{3x} = 128$$

b.
$$\frac{1}{3}\ln(1-x) = 10$$
 $\chi = 1 - e^{30}$

c.
$$3-5e^{3t}=10$$
 no solution

d.
$$\ln x + \ln(x + 2) = 3$$

d.
$$\ln x + \ln(x + 2) = 3$$
 $\chi = \frac{-2 + \sqrt{4 + 4e^3}}{2} \approx 3.59$

- 12. In a group project in learning theory, a mathematical model for the percent P of correct responses after n trials was found to be $P(n) = \frac{0.9}{1 + \overline{80 \, 1n}}$.
 - a. What percent of the responses are correct in the first trial?
 b. After how many trials will 70% of the responses be correct?

0% of the responses be correct?
$$140^{\circ}$$

 $13 \quad n \ge -10 \ln (3/3)$

- 13. A new truck costs \$35,000. The value of the truck after t years is modeled by V(t) = $35000 \left(\frac{4}{5}\right)^{t}$.
 - a. Evaluate the function at the given times

t	V(t)
0	35,000
1	28,000
2	22,400
3	17.920

- b. Sketch the graph by hand in an appropriate window range. Label axes.
- Find the value of the truck after 7 years. Show work.
- time d. Based on the graph, describe how the value of the truck changes as time goes by. Then complete the statement: As time goes by, value decrease. As $t \to \infty$, $V(t) \to 0$.
- 14. Given the graph of $f(x) = \ln x$, then the graph of $y = \ln(x k)$, k > 0, then which of th following is true?
 - (a,) A vertical asymptote at x = k.
 - b. A horizontal asymptote at y = k.
 - c. A vertical asymptote at x = 0.
 - d. A horizontal asymptote at y = 0.

- logca = b 15. What logarithmic equation is equivalent to $c^b = a$?
- 16. What is the first step to solving the equation $2 + \ln(x + 1) = 7$. Subtract 2 from both Sides
- 17. Which statement is true? Mark all that apply.

a
$$2^x \log_2 x = x$$

b $\log_2 2^x = x$
c. $2^{\log_2 x} = x$

18. The expression $\log x - 3 \log 2$ is equivalent to $\log(x - 8)$ is true or false?

false
$$\log x - \log 2^3 =$$

$$\log x - \log 8 =$$

$$\log \left(\frac{x}{8}\right) \neq \log(x-8)$$

Y= 2-e1

or y = -ex+2

4c.
$$y = ln(2-x)$$

$$e^{x} = 2 - y$$

6.
$$\ln x + \frac{1}{2} \ln (M-x) - \ln 9 = \ln x + \ln \sqrt{4-x} - \ln 9$$

= $\ln [x\sqrt{4-x}] - \ln 9 = \ln [\frac{x\sqrt{4-x}}{9}]$

7a.
$$\ln\left(\frac{4/x}{8y}\right) = \ln 4/x - \ln 8y = 4 \ln x - \ln 8 - \ln y$$

b.
$$\log_2(8x^3) = \log_2 8 + \log_2 x^3 = \log_2 8 + 3\log_2 x$$

d.
$$\ln x + \ln(x+2) = 3 \rightarrow \ln[x(x+2)] = 3 \rightarrow x(x+2) = 8^3 \rightarrow x^2 + 2x - e^3 = 0$$

 $x = -2 \pm \sqrt{4 + 4e^3} \approx 3.591899$, no neg. Solution

126.
$$0.7 = \frac{0.9}{1 + \bar{e}^{0.\text{In}}} \rightarrow 1 + \bar{e}^{0.\text{In}} = \frac{0.9}{0.7}$$

$$e^{-0.1n} = \frac{9}{7} - 1 \rightarrow -0.1n = \ln(\frac{9}{4} - 1) \rightarrow n = -10 \ln(\frac{9}{4} - 1)$$