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Functions of several variables, coordinate systems 
 
Functions of more than one variable (14.1) 
 
An equation in 3 variables, what does that look like? What if it has fewer variables, but is in three 
dimensions? 
 
In 2D, we consider y to be the dependent variable and x to be the independent variable. So as a function 
we write 𝑦 = 𝑓(𝑥). 
 
In 3D, we consider z to be dependent variable, and both x and y to be independent variables. So as a 
function we write 𝑧 = 𝑓(𝑥, 𝑦) 
 
Domain and range of functions of more than one variable. 
The range doesn’t change much. The range depends on the possible outcomes of a single variable (z), so 
we can express it in interval notation just like we did with functions of one variable. 
 
The domain can depend on both x and y, and some relationship between x and  y: that can’t be written 
as an interval.  Express the domain in set builder notation. 
 

𝐷: {(𝑥, 𝑦)|𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑥 𝑎𝑛𝑑 𝑦} 
 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 11 
 

𝐷: {(𝑥, 𝑦)|𝑥 ∈ ℝ, 𝑦 ∈ ℝ} 
𝑅: (−11, ∞) 

 

𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2 − 16 
 

𝑥2 + 𝑦2 − 16 ≥ 0 
𝑥2 + 𝑦2 ≥ 16 

 
𝐷: {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≥ 16} 

𝑅: [0, ∞) 
 
https://c3d.libretexts.org/CalcPlot3D/index.html 
GraphCalc (app for computer) 
 
Will circle back to contour curves/level curves and traces 
 
Equations of lines and planes in 3D 
 
Equations of lines are relatively complex in 3D: 1) in parametric form, 2) intersect two planes to obtain 
the line 
 
Parametric form, or vector form of a line: 
 

https://c3d.libretexts.org/CalcPlot3D/index.html


𝑥 = 𝑥0 + 𝑎𝑡, 𝑦 = 𝑦0 + 𝑏𝑡, 𝑧 = 𝑧0 + 𝑐𝑡 
 

𝑟(𝑡) = 〈𝑥0 + 𝑎𝑡, 𝑦0 + 𝑏𝑡, 𝑧0 + 𝑐𝑡〉 = 〈𝑥0, 𝑦0, 𝑧0〉 + 〈𝑎, 𝑏, 𝑐〉𝑡 
 
As an intersection of planes/symmetric equations 
 

(𝑥 − 𝑥0)

𝑎
=

𝑦 − 𝑦0

𝑏
=

𝑧 − 𝑧0

𝑐
 

 
Obtained from the parametric form, by solving for t and equating them, but any two expressions makes 
a plane, all equal results in the intersection of planes 
 
Find an equation for the line that passes through the points (−3, −2, 4), (1, −1,5). 
 

〈𝑎, 𝑏, 𝑐〉 =  〈−4, −1, −1〉 
 
Parametric form: 

𝑟(𝑡) = 〈−3 − 4𝑡, −2 − 𝑡, 4 − 𝑡〉 
 
Symmetric form: 
 

𝑥 + 3

−4
=

𝑦 + 2

−1
=

𝑧 − 4

−1
 

 
Finding equations of planes in 3D: 
 
A plane in 3D is defined by a point in the plane and the vector perpendicular to the surface (𝑛⃗⃗ =
〈𝑎, 𝑏, 𝑐〉). 
 

𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0 
 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 
 
We want to find an equation of the plane containing the points (1, −1,2), (2, −4,3), (3,5,2). 
 
First: find two vectors in the plane 
 

𝑣⃗1 = 〈−1,3, −1〉, 𝑣⃗2 = 〈−2, −6,0〉 
Second: find a vector perpendicular to the plane by doing the cross product of these two vectors 
 

𝑣⃗1 × 𝑣⃗2 = |
𝑖 𝑗 𝑘

−1 3 −1
−2 −6 0

| = (0 − 6)𝑖 − (0 − 2)𝑗 + (6 + 6)𝑘 = 〈−6,2,12〉 

 
Write equation: −6(𝑥 − 1) + 2(𝑦 + 1) + 12(𝑧 − 2) = 0 
 
Distance between a point and a line, or a point and a plane; and can be useful for determining the angle 
between two planes 
 



If the normal vector that defines two planes are parallel (multiples of each other), then the planes are 
also parallel (or identical). 
 
If planes intersect, we can find the angle between the plane: by finding the angle between the normal 
vectors defining the plane. 
 

𝑥 + 𝑦 + 𝑧 = 3 
𝑥 − 2𝑦 + 3𝑧 = 10 

 
𝑛⃗⃗1 = 〈1,1,1〉, 𝑛⃗⃗2 = 〈1, −2,3〉 

 

cos(𝜃) =
1 − 2 + 3

√3√14
=

2

√42
 

cos−1 (
2

√42
) = 72.02 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, 𝑜𝑟 1.257 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

 
Distance between a plane and a line: 
 
The distance between a point and plane: a point in space (P), a point in the plane (Q), and the normal 
vector to the plane (n) 
 
The distance between a point a line: a point in space (P), a point on the line (Q), and the vector the 
defines the direction of the line (v). 
 

𝑑 =
|𝑄𝑃⃗⃗⃗⃗ ⃗⃗ ∙ 𝑛|

|𝑛|
 

 

𝑑 =
|𝑄𝑃⃗⃗⃗⃗ ⃗⃗ × 𝑣|

|𝑣|
 

 
Find the distance between the point and the plane: (1, 2,3), 𝑥 + 𝑦 + 𝑧 = 3 
 

𝑃 = (1,2,3), 𝑄 = (3, −1,1), 𝑛 = 〈1,1,1〉 
𝑃𝑄 = 〈−2,3,2〉 

 
𝑃𝑄 ∙ 𝑛 = −2 + 3 + 2 = 3 

|𝑛| = √3 

𝑑 =
3

√3
 

 

Find the distance between point (1,2,3) and the line 
𝑥−2

3
=

𝑦+1

2
= 𝑧 − 4 

 
𝑄 = (2, −1,4), 𝑣 = 〈3,2,1〉 

 
𝑃𝑄 = 〈−1,3, −1〉 

 



𝑃𝑄 × 𝑣 = |
𝑖 𝑗 𝑘

−1 3 −1
3 2 1

| = (3 + 2)𝑖 − (−1 + 3)𝑗 + (−2 − 9)𝑘 = 〈5, −2, −11〉 

𝑑 =
√25 + 4 + 121

√9 + 4 + 1
=

√150

√14
=

√75

√7
 

 
 
Cylinders and Quadric Surfaces 
 
Circular cylinder is 𝑥2 + 𝑦2 = 1 (cylinder wrapped the axis of the missing variable, z-axis) 
𝑥2 + 𝑧2 = 1 (wrapped around the y-axis) 
𝑦2 + 𝑧2 = 1 (wrapped around the x-axis) 
 
Quadric surfaces are the 3D equivalent of quadratic curves in 2D 
𝑦 = 𝑥2 or 𝑥 = 𝑦2 parabolas 
𝑎𝑥2 + 𝑏𝑦2 = 𝑐 circles/ellipses 
𝑎𝑥2 − 𝑏𝑦2 = 𝑐 hyperbolas 
 

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 𝑑 
Ellipsoid (sphere if a=b=c) 
 
Paraboloid 𝑧 = 𝑎𝑥2 + 𝑏𝑦2 (one linear term terms the axis the shape is wrapped around) 
 
Hyperbolic paraboloid 𝑧 = 𝑎𝑥2 − 𝑏𝑦2 (one linear term + change in sign of squared terms, linear term 
determines orientation) 
 
Hyperboloid: 1) of 1 sheet, vs. 2) of two sheets (determined by the number of negative signs) 
 
𝑎𝑥2 + 𝑏𝑦2 − 𝑐𝑧2 = 𝑑 (hyperboloid of one sheet wrapped about the z-axis, by where the negative sign 
is) 
 
𝑎𝑥2 − 𝑏𝑦2 − 𝑐𝑧2 = 𝑑 (hyperboloid of two sheets, wrapped around the x-axis, determined by where the 
positive sign) 
 
of 𝑑 goes to 0, then you get a cone: 
 
𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2 is a cone (the variable on one side by itself (or a different sign), is the axis it’s wrapped 
around). 
 
Coordinate systems: 
 
Polar Coordinates: 

𝑥2 + 𝑦2 = 𝑟2 
𝑥 = 𝑟𝑐𝑜𝑠(𝜃) 
𝑦 = 𝑟𝑠𝑖𝑛(𝜃) 

tan−1 (
𝑦

𝑥
) = 𝜃 

 



Cylindrical coordinates = polar coordinates + z 
 
Conversion formulas a exactly the same, just add 𝑧 = 𝑧. 
 
Suppose you have a point (1,0,4) in rectangular coordinates, and you want to convert to cylindrical 
coordinates. 
 
Convert (1,0) to polar, and then tack on the z. 
 

𝑥 = 1, 𝑦 = 0, 𝑟 = 1, 𝜃 = tan−1 (
0

1
) = 0 

(𝑟, 𝜃) = (1,0) 
In cylindrical: (1,0,4) = (1,0,4) = (𝑟, 𝜃, 𝑧) 
 
Spherical 
 
𝜌 is the distance (straight-line distance) from the origin 
𝜃 is the angle from the positive x-axis in the xy-plane (longitude) 
𝜙 is the angle from the positive z-axis (similar to latitude) 
 

𝑥2 + 𝑦2 + 𝑧2 = 𝜌2 
𝑥 = 𝜌 cos(𝜃) sin(𝜙) 
𝑦 = 𝜌 sin(𝜃) sin(𝜙) 

𝑧 = 𝜌cos (𝜙) 
 

tan−1 (
𝑦

𝑥
) = 𝜃 

𝜙 = cos−1 (
𝑧

√𝑥2 + 𝑦2 + 𝑧2
)   

 
𝑟2 = 𝑥2 + 𝑦2 = 𝜌2 sin2 𝜙 

𝑟 = 𝜌 sin(𝜙) 
 

(𝜌, 𝜃, 𝜙) 
 

𝑥2 + 𝑦2 = 𝑧 
 
Convert to cylindrical (z is function variable) 
 

𝑟2 = 𝑧 
 
Convert to spherical (𝜌 is the function variable) 
 

𝜌2 sin2 𝜙 = 𝜌 cos 𝜙 
 

𝜌 = cot 𝜙 csc 𝜙 
 
 
In Stewart book (15.8, 15.9) 


